|
|
Application of Synchrosqueezed Wavelet Transform for Extraction of the Oscillatory Parameters of Low Frequency Oscillation in Power Systems |
Yu Min1, Wang Bin1, Chen Xuxuan1, Wang Wenbo2, Jin Ji1 |
1. College of Information Science and Engineering Wuhan University of Science and Technology Wuhan 430081 China; 2. School of Science Wuhan University of Science and Technology Wuhan 430065 China |
|
|
Abstract For the non-stationary and nonlinear characteristics of low frequency oscillation in power system, a new time-frequency analysis method, namely synchrosqueezed wavelet transform (SWT), is used in the analysis of low frequency oscillation. The method overcomes the disadvantage of poor noise immunity, which is the drawback of most analysis methods. At the same time, it combines the advantages of empirical mode decomposition (EMD) and wavelet, which has the adaptability of EMD, and improves the ability of anti mode mixing based on EMD and wavelet. The SWT algorithm can be used to realize the separation of the low frequency oscillation mode with a single frequency component, and the instantaneous amplitude and frequency are obtained,then the damping ratio is calculated. Simulation and measured data results show that the SWT is effective and stronger than the traditional HHT method.
|
Received: 29 August 2016
Published: 29 March 2017
|
|
|
|
|
[1] Kunder P. 电力系统稳定与控制[M]. 北京: 中国电力出版社, 2002. [2] 赵妍, 李志民, 李天云. 电力系统低频振荡监测的Duffing振子可停振动系统法[J]. 电工技术学报, 2015, 30(20): 159-167. Zhao Yan, Li Zhimin, Li Tianyun. Duffing oscillator order stopping oscillation system method for monitoring of low—frequency oscillation in power system[J]. Transactions of China Electrotechnical Society, 2015, 30(20): 159-167. [3] 李天云, 谢家安, 张方彦, 等. HHT在电力系统低频振荡模态参数提取中的应用[J]. 中国电机工程学报, 2007, 27(28): 79-83. Li Tianyun, Xie Jiaan, Zhang Fangyan, et a1. Appli- cation of HHT for extracting model parameters low frequency oscillations in power systems[J]. Pro- ceedings of the CSEE, 2007, 27(28): 79-83. [4] 赵妍, 李志民, 李天云. 低频振荡模态参数辨识的共振稀疏分解SSI分析方法[J]. 电工技术学报, 2016, 31(2): 136-144. Zhao Yan, Li Zhimin, Li Tianyun. Low frequency oscillation modal parameter identification using resonance-based sparse signal decomposition and SSI method[J]. Transactions of China Electrotechnical Society, 2016, 31(2): 136-144. [5] 李天云, 袁明哲, 李军强, 等. 基于EMD和SSl的电力系统低频振荡模态参数识别方法[J]. 电力系统保护与控制, 2011, 39(8): 6-10. Li Tianyun, Yuan Mingzhe, Li Junqiang, et a1. Method of modal parameter identification of power system low frequency oscillation based on EMD and SSI[J]. Power System Protection and Control, 2011, 39(8): 6-10. [6] 李成鑫, 刘俊勇, 杨嘉浞, 等. 频移经验模态分解在低频振荡参数提取中的应用[J]. 电力系统自动化, 2011, 35(20): 1-6. Li Chengxin, Liu Junyong, Yang Jiashi, et al. Frequency shift empirical mode decomposition for extracting low frequency oscillation parameters[J]. Automation of Electric Power Systems, 2011, 35(20): 1-6. [7] 竺炜, 马建伟, 曾喆昭, 等. 分段傅里叶神经网络的低频振荡模式识别方法[J]. 电力系统保护与控制, 2012, 40(5): 40-45. Zhu Wei, Ma Jianwei, Zeng Zhezhao, et al. Low frequency oscillation mode recognition based on segment Fourier neural network algorithm[J]. Auto- mation of Electric Power Systems, 2012, 40(5): 40-45. [8] 候王宾, 刘天琪, 李兴源. 基于经验模态分解滤波的低频振荡Prony分析[J]. 物理学报, 2010, 59(5): 3531-3537. Hou Wangbin, Liu Tianqi, Li Xingyuan. Prony analysis of low frequency oscillations based on empirical mode decomposition filtering[J]. Acta Physica Sinica, 2010, 59(5): 3531-3537. [9] 李安娜, 吴熙, 蒋平, 等. 基于形态滤波Prony算法的低频振荡模式辨识的研究[J]. 电力系统保护与控制, 2015, 43(3): 137-142. Li Anna, Wu Xi, Jiang Ping, et al. Research on identifying low frequency oscillation modes based on morphological filtering theory and Prony algo- rithm[J]. Power System Protection and Control,2015, 43(3): 137-142. [10] 杨德昌, Rehtanz C, 李勇, 等. 基于改进希尔伯特-黄变换算法的电力系统低频振荡分析[J]. 中国电机工程学报, 2011, 31(10): 102-108. Yang Dechang, Rehtanz C, Li Yong, et al. Researching on low frequency oscillation in power system based on improved HHT algorithm[J]. Pro- ceedings of the CSEE, 2011, 31(10): 102-108. [11] 马燕峰, 赵书强. 用改进的Hilbert-Huang变换辨识电力系统低频振荡[J]. 高电压技术, 2012, 38(6): 1492-1499. Ma Yanfeng, Zhao Shuqiang. Identification of low- frequency oscillations in power system based on Hilbert-Huang transform[J]. High Voltage Engin- eering, 2012, 38(6): 1492-1499. [12] Rueda J L, Juarez C A, Erlich I. Wavelet-based analysis of power system low frequency electro- mechanical oscillations[J]. IEEE Transactions on Power System, 2011, 99(2): 1-11. [13] 邓集祥, 欧小高, 姚天亮. 基于小波能量系数的主导低频振荡模式检测[J]. 电工技术学报, 2009, 24(8): 141-146. Deng Jixiang, Ou Xiaogao, Yao Tianliang. Detection of the dominant inertial modes based on wavelet energy cofficient[J]. Transactions of China Electro- technical Society, 2009, 24(8): 141-146. [14] 张鹏飞, 薛禹胜, 张启平. 电力系统时变振荡特性的小波脊分析[J]. 电力系统自动化, 2004, 28(14): 32-35. Zhang Pengfei, Xue Yusheng, Zhang Qiping. Power system time-varying oscillation analysis with wavelet ridge algorithm[J]. Automation of Electric Power Systems, 2004, 28(14): 32-35. [15] 贾勇, 何正友. 基于受扰轨迹的低频振荡分析方法综述[J]. 电力系统保护与控制, 2012, 40(11): 140- 148. Jia Yong, He Zhengyou. Review on analysis methods for low frequency oscillations based on disturbed trajectories[J]. Power System Protection and Control, 2012, 40(11): 140-148. [16] Rilling G, Flandrin P. One or two frequencies? The empirical mode decomposition answers[J]. IEEE Transactions on Signal Processing, 2008, 56(1): 85-95. [17] 熊杰锋, 李群, 袁晓冬, 等. 电力系统谐波和间谐波检测方法综述[J]. 电力系统自动化, 2013, 37(11): 125-133. Xiong Jiefeng, Li Qun, Yuan Xiaodong, et al. Detection methods of harmonics and inter-harmonics in power systems[J]. Automation of Electric Power Systems, 2013, 37(11): 125-133. [18] Daubechies I, Lu J F, Wu H T. Synchrosqueezed wavelet transforms: an empirical mode decomposition- like tool[J]. Applied and Computational Harmonic Analysis, 2011, 30(2): 243-261. [19] Thakur G, Brevdo E, Fučkar N S, et al. The syn- chrosqueezing algorithm for time-varying spectral analysis: robustness properties and new paleoclimate applications[J]. Signal Processing, 2013, 93(5): 1079- 1094. [20] 黄忠来, 张建中. 同步挤压S变换[J]. 中国科学: 信息科学, 2016, 46(5): 643-650. Huang Zhonglai, Zhang Jianzhong. Synchro- squeezing S-transform[J]. Scientia Sinica Information, 2016, 46(5): 643-650. [21] 刘景良, 任伟新, 王佐才, 等. 基于同步挤压小波变换的结构瞬时频率识别[J]. 振动与冲击, 2013, 32(18): 37-42. Liu Jingliang, Ren Weixin, Wang Zuocai, et al. Instantaneous frequency identification based on synchrosqueezing wavelet transformation[J]. Journal of Vibration and Shock, 2013, 32(18): 37-42. [22] Roberto H, Han J J, van der Baan M. Applications of the synchrosqueezing transform in seismic time- frequency analysis[J]. Geophysics, 2014, 79(3): 55- 64. [23] Li C, Liang M. Time-frequency signal analysis for gearbox fault diagnosis using a generalized syn- chrosqueezing transform[J]. Mechanical Systems and Signal Processing, 2012, 26(4): 205-217. [24] Feng Z P, Chen X W, Liang M. Iterative generalized synchrosqueezing transform for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions[J]. Mechanical Systems and Signal Pro- cessing, 2015, 52-53: 360-375. [25] Meignen S, Oberlin T, Mclaughlin S. A new algo- rithm for multicomponent signals analysis based on synchrosqueezing: with an application to signal sampling and denoising[J]. IEEE Transactions on Signal Processing, 2012, 60(11): 5787-5798. [26] 喻敏, 王斌, 王文波, 等. 基于SST的间谐波检测方法[J]. 中国电机工程学报, 2016, 36(11): 2944- 2951. Yu Min, Wang Bin, Wang Wenbo, et al. An inter- harmonic detection method based on synchro- squeezing wavelet transform[J]. Proceedings of the CSEE, 2016, 36(11): 2944-2951. |
|
|
|