|
|
Flexible Graphite Composite Electrical Grounding Material and Its Grounding Application Features |
Xiao Wei1, 2, Hu Yuanchao2, Ruan Jiangjun2, Zhan Qinghua1, 2, Huang Daochun2 |
1. Foshan Power Supply Bureau Guangdong Power Grid Co. Ltd Foshan 528000 China; 2. School of Electrical Engineering Wuhan University Wuhan 430072 China |
|
|
Abstract The metallic grounding materials used in power system nowadays have faced with lots of problems, such as corrosion, the difficulty of transportation and construction, easy to be stolen and high cost, and so on. Thus, a new type of grounding material, i.e. flexible graphite composite grounding material, was proposed and produced. Firstly, the material composition of the material was illustrated in this paper. Secondly, the skin effects and the inductive effects of the graphite composite grounding materials with copper and steel were calculated by finite element method respectively. And then the expanding graphite composite grounding material was made. At last, through the application in 110kV and 220kV transmission line tower grounding grid, it is shown that the new grounding material can meet the requirements of practical engineering.
|
Received: 04 December 2015
Published: 08 February 2017
|
|
|
|
|
[1] 谷山强, 何金良, 陈维江, 等. 架空输电线路并联间隙防雷装置电弧磁场力计算研究[J]. 中国电机工程学报, 2006, 26(7): 140-145. Gu Shanqiang, He Jinliang, Chen Weijiang, et al. Magnetic force computation for the electric arc of parallel gap lightning protection device on over-head transmission lines[J]. Proceedings of the CSEE, 2006, 26(7): 140-145. [2] 舒印彪, 胡毅. 交流特高压输电线路关键技术的研究及应用[J]. 中国电机工程学报, 2007, 27(36): 1-7. Shu Yinbiao, Hu Yi. Research and application of the key technologies of UHV AC Transmission line[J]. Proceedings of the CSEE, 2007, 27(36): 1-7. [3] Grcev L. Computer analysis of transient voltages in large grounding systems[J]. IEEE Transactions on Power Delivery, 1996, 11(2): 815-823. [4] 何金良, 曾嵘. 电力系统接地技术[M]. 北京: 科学出版社, 2007. [5] Gorman J, Arey M, Koch G. Cost of corrosion in the electric power industry[R]. Electric Power Research Institute, 2001. [6] 许磊, 李琳. 基于电网络理论的变电站接地网腐蚀及断点诊断方法[J]. 电工技术学报, 2012, 27(10): 270-276. Xu Lei, Li Lin. Fault diagnosis for grounding grids based on electric network theory[J]. Transactions of China Electrotechnical Society, 2012, 27(10): 270-276. [7] 刘洋, 崔翔, 赵志斌, 等. 变电站接地网腐蚀诊断磁场检测系统的设计与应用[J]. 电工技术学报, 2009, 24(1): 176-182. Liu Yang, Cui Xiang, Zhao Zhibin, et al. Design and application of testing magnetic field system for corrosion diagnosis of grounding grids in sub- station[J]. Transactions of China Electrotechnical Society, 2009, 24(1): 176-182. [8] 陆培钧, 黄松波, 豆朋, 等. 佛山地区变电站接地网腐蚀状况分析[J]. 高电压技术, 2008, 34(9): 1996-1999. Lu Peijun, Huang Songbo, Dou Peng, et al. Corrosion status of substation grounding grid in Foshan area[J]. High Voltage Engineering, 2008, 34(9): 1996-1999. [9] 文习山, 宋周, 谭波, 等. 铜覆钢接地导体的电气性能[J]. 高电压技术, 2015, 41(2): 608-614. Wen Xishan, Song Zhou, Tan Bo, et al. Electrical properties of copper-clad steel grounding condu- ctors[J]. High Voltage Engineering, 2015, 41(2): 608-614. [10] 满超楠. 接地材料和防腐降阻材料的性能研究及其优化选择[D]. 长沙: 长沙理工大学, 2013. [11] 鹿中晖, 章钢娅, 王永红, 等. 铜在典型内陆盐土中的腐蚀特征[J]. 腐蚀科学与防护技术, 2009, 21(6): 522-525. Lu Zhonghui, Zhang Gangya, Wang Yonghong, et al. Corrosion characteristics of Cu in typical inland salty soils[J]. Corrosion Science and Protection Techno- logy, 2009, 21(6): 522-525. [12] 赵俊, 强宝仁. 输电线路接地网防盗措施的改进[J]. 电力学报, 2005, 19(3): 251-252. Zhao Jun, Qiang Baoren. Improvement of the theft- proof measure of earth network of transmission line of electricity[J]. Journal of Electric Power, 2005, 19(3): 251-252. [13] 袁涛, 雷超平, 司马文霞, 等. 提高接地极散流效率的冲击接地降阻分析[J]. 电工技术学报, 2012, 27(11): 278-284. Yuan Tao, Lei Chaoping, Sima Wenxia, et al. Analysis of grounding resistance reduction effect based on enhancing impulse current leakage efficiency[J]. Transactions of China Electrotechnical Society, 2012, 27(11): 278-284. [14] Costache G I, Nemes M V, Petriu E M. Finite element method analysis of the influence of the skin effect, and eddy currents on the internal magnetic field and impedance of a cylindrical conductor of arbitrary cross-section[C]//Canadian Conference on Electrical and Computer Engineering, 1995, 1: 253-256. [15] 吕安强, 李永倩, 李静, 等. 光电复合海缆中光纤与导体温度关系的有限元分析方法[J]. 电工技术学报, 2014, 29(4): 91-96. Lü Anqiang, Li Yongqian, Li Jing, et al. Finite element analysis method for temperature relationship between conductor and optical fiber in optic-electric composite submarine cable[J]. Transactions of China Electrotechnical Society, 2014, 29(4): 91-96. [16] Tomomi Narita, Takeshi Yamada, Azuma Mochizuki, et al. Observation of current wave shapes of lightning strokes on transmission towers[J]. IEEE Transactions on Power Delivery, 2000, 15(1): 429-435. [17] 段建东, 任晋峰, 张保会, 等. 超高速保护中雷电干扰识别的暂态法研究[J]. 中国电机工程学报, 2006, 26(23): 7-13. Duan Jiandong, Ren Jinfeng, Zhang Baohui, et al. Study of transient approach of discriminating lightning disturbance in ultra-high-speed portection[J]. Proceedings of the CSEE, 2006, 26(23): 7-13. [18] Ramamoorty M, Narayanan M M B, Parameswaran S, et al. Transient performance of grounding grids[J]. IEEE Transactions on Power Delivery, 1989, 4(4): 2053-2059. [19] Otero A F, Cidras J, Del Alamo J L. Frequency- dependent grounding system calculation by means of a conventional nodal analysis technique[J]. IEEE Transa- ctions on Power Delivery, 1999, 14(3): 873-878. [20] 卡兰塔罗夫, 采伊特林. 电感计算手册[M]. 陈汤铭, 刘保安, 罗应立, 译. 北京: 机械工业出版社, 1992. [21] 刘振亚. 国家电网公司输变电工程典型设计: 110- 500kV输电线路接地装置分册[M]. 北京: 中国电力出版社, 2006. [22] DL/T 620—1997 交流电气装置的过电压保护和绝缘配合[S]. 北京: 中国标准出版社, 1997. |
|
|
|