|
|
Plasma Enhanced CH4 Direct Conversion in Pulsed Dielectric Barrier Discharges |
Gao Yuan1, 2, Zhang Shuai2, Liu Feng2, Wang Ruixue2, Wang Tielin1, Shao Tao2, 3 |
1. Wuhan Institute of Technology Wuhan 430074 China; 2. Institute of Electrical Engineering Chinese Academy of Sciences Beijing 100190 China; 3. University of Chinese Academy of Sciences Beijing 100039 China |
|
|
Abstract In this paper, plasma catalytic reforming of CH4 is carried out by both microsecond- pulse and nanosecond-pulse dielectric barrier discharges (DBDs). Characteristics of DBD plasma for microsecond-pulse and nanosecond-pulse had been compared. Effects of pulse repetition rate, CH4 flow rate and input power on the convention rate of CH4 and distribution of gaseous products are investigated. Moreover, the corresponding selection of chemical reaction paths is analyzed. The results show that main parts of the gaseous products are H2 and C2H6. The conversion rate of CH4 and the yield of hydrogen increase with the pulse repetition rate, but they decrease with the CH4 flow rate. Furthermore, the conversion rate of CH4 and the yield of hydrogen are high for microsecond-pulse DBD when the pulse repetition rate and the CH4 flow rate are fixed. The energy efficiency in the case of nanosecond-pulse DBD is higher than that in the case of microsecond-pulse DBD. In addition, coking and liquid hydrocarbons appear on the quartz tube and inner electrode at the conditions of high pulse repetition rate and low CH4 flow rate, leading to the reduction of C&H balance. The selectivities of H2 and C2H6 decreases with the increase of the input power in the case of microsecond-pulse DBD, while they increase with the input power in the case of nanosecond-pulse DBD.
|
Received: 03 June 2016
Published: 08 February 2017
|
|
|
|
|
[1] 李哲, 冒泗农, 张淑英. 世界石油资源现状, 供需状况预测分析和对策[J]. 技术经济与管理研究, 2007, 155(6): 105-107. Li Zhe, Mao Sinong, Zhang Shuying. The situation of world's petroleum supply and demand, analysis and the countermeasures[J]. Technoeconomics and Manage- ment Research, 2007, 155(6): 105-107. [2] 朱爱民, 宫为民, 张秀玲, 等. 脉冲电晕等离子体应用于CH 4 偶联的探索研究[J]. 天然气化工: C1 化学与化工, 1997, 22(2): 1-5. Zhu Aimin, Gong Weimin, Zhang Xiuling, et al. Investigation on pulsed corona induced plasma for coupling of methane[J]. Natural Gas Chemical Industry, 1997, 22(2): 1-5. [3] 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3): 685-705. Shao Tao, Zhang Cheng, Wang Ruixue, et al. Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engin- eering, 2016, 42(3): 685-705. [4] 丁玉柱, 夏胜国, 王琼芳, 等. 介质阻挡放电对CH 4 离解及燃烧火焰的影响[J]. 中国电机工程学报, 2011, 31(31): 204-210. Ding Yuzhu, Xia Shengguo, Wang Qiongfang, et al. Effect of dielectric barrier discharge on methane dissociation and combustion[J]. Proceedings of the CSEE, 2011, 31(31): 204-210. [5] 陈琳. 低温等离子体-催化选择性转化CH 4 研究进展[J]. 天然气化工: C1 化学与化工, 2011, 36(2): 70-74. Chen Lin. Advance in the research on methane selective conversion by cold plasma and catalysis[J]. Natural Gas Chemical Industry, 2011, 36(2): 70-74. [6] 王钰恒, 汤红卫, 仲崇山. 空气介质阻挡放电固氮的研究[J]. 高压电器, 2015, 51(6): 81-85. Wang Yuheng Tang Hongwei, Zhong Chongshan. Study on air dielectric-barrier discharges nitrogen fixation[J]. High Voltage Apparatus, 2015, 51(6): 81-85. [7] Babaie M, Davari P, Zare F, et al. Effect of pulsed power on particle matter in diesel engine exhaust using a DBD plasma reactor[J]. IEEE Transactions on Plasma Science, 2013, 41(8): 2349-2358. [8] 杨长河, 刘健辉, 曹志荣, 等. 高级氧化耦合活性炭吸附处理水中碱性品红[J]. 高电压技术, 2016, 42(2): 392-397. Yang Changhe, Liu Jianhui, Cao Zhirong, et al. Treatment of fuchsin basic in water by DBD advanced oxidation coupling with activated carbon adsorption[J]. High Voltage Engineering, 2016, 42(2): 392-397. [9] 丁正方, 方志, 许靖. 四氟化碳含量对大气压Ar等离子体射流放电特性的影响[J]. 电工技术学报, 2016, 31(7): 159-165. Ding Zhengfang, Fang Zhi, Xu Jing. Influences of CF 4 content on discharge characteristics of argon plasma jet under atmospheric pressure[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(7): 159-165. [10] 毛晓坡, 何正浩, 王英, 等. 激光触发真空开关的目标材料触发特性[J]. 电工技术学报, 2016, 31(9): 169-173. Mao Xiaopo, He Zhenghao, Wang Ying, et al. Triggered characteristics of the target material within laser triggered vacuum switches[J]. Transactions of China Electrotechnical Society, 2016, 31(9): 169-173. [11] 陈思乐, 许桂敏, 穆海宝, 等. 低温等离子体处理柴油机尾气的研究进展[J]. 高压电器, 2016, 52(4): 22-29. Chen Sile, Xu Guimin, Mu Haibao, et al. Research progress in the treatment of diesel engine exhaust by non-thermal plasma[J]. Transactions of China Electro- technical Society, 2016, 52(4): 22-29. [12] 李喜, 李杰, 章林文, 等. 空气中三介质层脉冲 DBD对聚四氟乙烯的亲水性改善[J]. 高电压技术, 2015, 41(12): 4048-4054. Li Xi, Li Jie, Zhang Linwen, et al. Polytetrafluor- oethylene surface treatment of pulsed three- dielectric-layers barrier discharge plasma in atmospheric air[J]. High Voltage Engineering, 2015, 41(12): 4048-4054. [13] 张文明, 张玉苍, 李庆, 等. 辉光放电电解等离子体引发纤维素基水凝胶的制备及其多重响应行为[J]. 高电压技术, 2015, 41(2): 523-528. Zhang Wenming, Zhang Yucang, Li Qing, et al. Glow discharge electrolysis plasma induced synthesis of cellulose-graft-acrylic hydrogels and their multiple responses behaviors[J]. High Voltage Engineering, 2015, 41(2): 523-528. [14] 周亦骁, 方志, 邵涛. Ar/O 2 和Ar/H 2 O中大气压等离子体射流放电特性的比较[J]. 电工技术学报, 2014, 29(11): 229-238. Zhou Yixiao, Fang Zhi, Shao Tao. Comparison of discharge characteristics of atmospheric pressure plasma jet in Ar/O 2 and Ar/H 2 O mixtures[J]. High Voltage Engineering, 2014, 29(11): 229-238. [15] Snoeckx R, Zeng Y X, Tu X, et al. Plasma-based dry reforming: improving the conversion and energy efficiency in a dielectric barrier discharge[J]. RSC Advances, 2015(5): 29799-29808. [16] Wang B, Yan W, Ge W, et al. Methane conversion into higher hydrocarbons with dielectric barrier discharge micro-plasma reactor[J]. Journal of Energy Chemistry, 2013, 22(6): 876-882. [17] Tu X, Whitehead J C. Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: understanding the synergistic effect at low temperature[J]. Applied Catalysis B: Environmental, 2012, 125(33): 439-448. [18] 马云飞, 章程, 牛宗涛, 等. 微秒和纳秒脉冲激发介质阻挡放电传输电荷特性对比[J]. 高电压技术, 2015, 41(9): 2979-2987. Ma Yunfei, Zhang Cheng, Niu Zongtao, et al. Comparison for characteristics of transported charges in dielectric barrier discharge driven by microsecond and nanosecond pulsed powers[J]. High Voltage Engineering, 2015, 41(9): 2979-2987. [19] Janev R K, Reiter D. Collision processes of CH y and CH y + hydrocarbons with plasma electrons and pro- tons[J]. Physics of Plasmas, 2002, 9(9): 4071-4081. [20] Taghvaei H, Jahanmiri A, Rahimpour M R, et al. Hydrogen production through plasma cracking of hydrocarbons: effect of carrier gas and hydrocarbon type[J]. Chemical Engineering Journal, 2013, 226(24): 384-392. [21] Kado S, Sekine Y, Nozaki T, et al. Diagnosis of atmospheric pressure low temperature plasma and application to high efficient methane conversion[J]. Catalysis Today, 2004, 89(1): 47-55. [22] Schmidt-Szalowski K, Opalińska T, Sentek J, et al. Methane conversion into C 2 hydrocarbons and carbon black in dielectric-barrier and gliding discharges[J]. Journal of Advanced Oxidation Technologies, 2004, 7(1): 39-50. |
|
|
|