|
|
Quantitative Characterization of the Striking Saltus Distance of Wind Turbine Blade |
Ren Hanwen1,Guo Zixin1, Ma Yufei1, Li Qingmin1, Siew W H2 |
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy SourcesNorth China Electric Power University Beijing 102206 China; 2. The University of Strathclyde Glasgow G1 1XQ UK |
|
|
Abstract Lightning attachment to wind turbine blade is a key process of research about lightning protection of blades. An appropriate analysis of striking distance is beneficial for the lightning attachment research. Based on the physical mechanism of lightning attachment process, the distance between the heads of downward leader and connecting upward leader was defined as striking saltus distance. The influence of multiple upward leaders on lightning attachment and striking saltus distance was then analyzed. Considering the leader inception and propagation theory, a lightning attachment model of wind turbine blade was established according to equivalent model of downward leader and the judgement method of stable upward leader. Furthermore, a striking saltus distance equation was proposed using model and results show that the lightning parameters, such as lateral distance, have no effect on striking saltus distance. Experimental and observational results were used to verify the model. Moreover, a striking distance equation to ground was proposed considering the influence of upward leaders to the electric field. Comparative analysis indicates that the existing equations are maybe ineffective for lightning calculation of wind turbines.
|
Received: 14 December 2016
Published: 18 August 2017
|
|
|
|
|
[1] 肖翔, 张小青, 李聪. 风电机组雷电过电压的仿真分析[J]. 电工技术学报, 2015, 30(24): 237-244. Xiao Xiang, Zhang Xiaoqing, Li Cong. Simulation analysis on overvoltage in wind turbines by lightning stroke[J]. Transactions of China Electrotechnical Society, 2015, 30(24): 237-244. [2] 孙欣, 方陈, 沈风, 等. 考虑风电出力不确定性的发用电机组组合方法[J]. 电工技术学报, 2017, 32(4): 204-211. Sun Xin, Fang Chen, Shen Feng, et al. An integrated generation-consumption unit commitment model considering the uncertainty of wind power[J]. Transactions of China Electrotechnical Society, 2017, 32(4): 204-211. [3] 郑伟, 何世恩, 智勇, 等. 大型风电基地的发展特点探讨[J]. 电力系统保护与控制, 2014, 42(22): 57-61. Zheng Wei, He shien, Zhi Yong, et al. Probe into the development characteristics of large-scale wind power base[J]. Power System Protection and Control, 2014, 42(22): 57-61. [4] 郭子炘, 李庆民, 闫江燕, 等. 海上风电场雷击演化物理机制的研究综述[J]. 电气工程学报, 2015, 10(5): 10-19. Guo Zixin, Li Qingmin, Yan Jiangyan, et al. Summary of research on physical evolution mechanism of lightning discharge of offshore wind farms[J]. Journal of Electrical Engineering, 2015, 10(5): 10-19. [5] 陈维江, 贺恒鑫, 钱冠军, 等. 基于长间隙放电研究雷电屏蔽问题的进展[J]. 中国电机工程学报, 2012, 32(10): 1-12. Chen Weijiang, He Hengxin, Qian Guanjun, et al. Review of the lightning shielding against direct lightning strokes based on laboratory long air gap discharges[J]. Proceedings of the CSEE, 2012, 32(10): 1-12. [6] Rizk F. Modeling of transmission line exposure to direct lightning strokes[J]. IEEE Transactions on Power Delivery, 1990, 5(4): 1983-1990. [7] Golde R H. The lightning conductor[J]. Journal of the Franklin Institute. 1967, 283(6): 451-463. [8] 江安烽, 任晓明, 孙伟, 等. 风机叶片雷电易击点模型试验技术研究分析[J]. 华东电力, 2013, 41(12): 2550-2555. Jiang Anfeng, Ren Xiaoming, Sun Wei, et al. Scale model experiment technology for lightning attachment points of wind turbine blades[J]. East China Electric Power, 2013, 41(12): 2550-2555. [9] Madsen S F, Mieritz C F, Garolera A C. Numerical tools for lightning protection on wind turbines[C]// 2013 International Conference on Lightning and Static Electricity, Seattle, United States, 2013: 1-6. [10] Madsen S F, Erichsen H V. Improvements of numerical models to determine lightning attachment points on wind turbines[C]//2008 International Conference on Lightning Protection (ICLP), Uppsala, Sweden, 2008: 1-11. [11] Miki M, Miki T, Wada A, et al. Observation of lightning flashed to wind turbines[C]//2010 International Conference on Lightning Protection (ICLP), Cagliari, Italy, 2010: 1-7. [12] Cooray V, Rakov V, Theethayi N. The lightning strike distance-revisited[J]. Journal of Electrostatics, 2007, 65(5-6): 296-306. [13] IEEE working group on estimating the lightning performance of overhead transmission lines. IEEE guide for improving the lightning performance of transmission lines[Z]. The Institute of Electrical and Electronics Engineers Inc, New York, 1997. [14] 罗日成, 李稳, 陆毅, 等. 基于Hilbert-Huang变换的1000 kV输电线路雷电绕击与反击识别方法[J]. 电工技术学报, 2015, 30(3): 232-239. Luo Richeng, Li Wen, Lu Yi, et al. Identification method of shielding failure and back striking over-voltage of 1 000 kV transmission line based on hilbert-huang transform[J]. Transactions of China Electrotechnical Society, 2015, 30(3): 232-239. [15] 袁海燕, 傅正财, 魏本刚, 等. 综合考虑风偏、地形和工作电压的特高压交流线路雷电绕击性能[J]. 电工技术学报, 2009, 24(5): 148-153. Yuan Haiyan, Fu Zhengcai, Wei Bengang, et al. Lightning shielding failure analysis of UHVAC transmission lines based on improved EGM[J]. Transactions of China Electrotechnical Society, 2009, 24(5): 148-153. [16] Garolera A C. Lightning protection of flap system for wind turbine blades[D]. Denmark: Technical University of Denmark, 2014. [17] 师伟. 雷击特高压输电线路先导连接过程数值模拟研究[D]. 济南: 山东大学, 2015. [18] 郇嘉嘉, 曾海涛, 黄少先. 应用线路避雷器提高10 kV配电线路防雷性能的研究[J]. 电力系统保护与控制, 2009, 37(9): 109-112. Huan Jiajia, Zeng Haitao, Huang Shaoxian. Study on line arrester applied to improve the lightning performance of 10 kV distribution lines[J]. Power System Protection and Control, 2009, 37(9): 109-112. [19] 马宇飞, 张黎, 闫江燕, 等. 风机叶片雷击上行先导的起始物理机制与临界长度判据[J]. 中国电机工程学报, 2016, 36(21): 5975-5982. Ma Yufei, Zhang Li, Yan Jiangyan, et al. Inception mechanism of lightning upward leader from the wind turbine blade and a proposed critical length criterion[J]. Proceedings of the CSEE, 2016, 36(21): 5975-5982. [20] Abdelsalam M, Turky A A, Hashem A A. The oneset voltage of coronas on bare and coated conductors[J]. Journal of Physics D Applied Physics, 1998, 31(19): 2550-2556. [21] Becerra M, Cooray V. A simplified physical model to determine the lightning upward connecting leader inception[J]. IEEE Transactions on Power Delivery, 2006, 21(2): 897-908. [22] Gallimberti I. The mechanism of long spark formation[J]. Le Journal De Physique Colloques, 1972, 40(C7): 193-250. [23] Rizk F. A model for switching impulse leader inception and breakdown of long air-gaps[J]. IEEE Transactions on Power Delivery, 1989, 4(1): 596-603. [24] Lalande P, Bondiou A, Bacchiega G, et al. Observations and modeling of lightning leaders[J]. Comptes Rendus Physique, 2002, 3(10): 1375-1392. [25] Ishii M, Saito M, Natsuno D, et al. Lightning incidence on wind turbines in winter [C]//International Conference on Lightning Protection, Shanghai, 2014: 1734-1738. [26] Armstrong H R, Whitehead E R. Field and analytical studies of transmission line shielding[J]. IEEE Transactions on Power Apparatus and Systems, 1968, 87(1): 270-282. [27] IEEE Std 998-2012. IEEE guide for direct lightning stroke shielding of substations[S]. |
|
|
|