|
|
A Wireless Power Sharing Control Strategy for Hybrid Energy Storage Systems in DC Microgrids |
Yang Jie1, Jin Xinmin1, Wu Xuezhi2, Chen Meifu2, V G Agelidis3 |
1. National Active Distribution Network Technology Research Center Beijing Jiaotong University Beijing 100044 China; 2. Collaborative Innovation Center of Electric Vehicles in Beijing Beijing 100044 China; 3. Department of Electrical Engineering Technical University of Denmark Kongens Lyngby 2800 Denmark |
|
|
Abstract In order to compensate multiple time scales power fluctuation resulted from distributed energy resources and loads, hybrid energy storage systems are employed as the buffer unit in DC microgrid. In this paper, a wireless hierarchical control strategy is proposed to realize power sharing between energy density storage unit and power density storage unit in reasonable fashion. Primary control introduces change rate of voltage as virtual information carrier, and urges supercapacitor unit to pick up major dynamic power immediately in the load switching moment, by setting sensitivity of different storage interface converters. The steady state error produced in primary control is eliminated by secondary control, in which voltage magnitude is maintained and zero steady state current in supercapacitor is guaranteed. In this framework, autonomous and coordinated control is achieved using only local information of each unit, therefore economic and reliability issues born along communication network can be avoided. The feasibility and effectiveness of the proposed control strategy are validated by experimental results.
|
Received: 20 December 2016
Published: 26 May 2017
|
|
|
|
|
[1] 肖湘宁. 新一代电网中多源多变换复杂交直流系统的基础问题[J]. 电工技术学报, 2015, 30(15): 1-14. Xiao Xiangning. Basic problems of the new complex AC-DC power grid with multiple energy resources and multiple conversions[J]. Transactions of China Electrotechnical Society, 2015, 30(15): 1-14. [2] 杨捷, 金新民, 杨晓亮, 等. 交直流混合微网功率控制技术研究综述[J]. 电网技术, 2017, 41(1): 29-39. Yang Jie, Jin Xinmin, Yang Xiaoliang, et al. Overview on power control technologies in hybrid AC-DC micro- grid[J]. Power System Technology, 2017, 41(1): 29-39. [3] 李武华, 徐驰, 禹红斌, 等. 直流微网系统中混合储能分频协调控制策略[J]. 电工技术学报, 2016, 31(14): 84-92. Li Wuhua, Xu Chi, Yu Hongbin, et al. Frequency dividing coordinated control strategy for hybrid energy storage system of DC microgrid[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 84-92. [4] 孟润泉, 刘家赢, 文波, 等. 直流微网混合储能控制及系统分层协调控制策略[J]. 高电压技术, 2015, 41(7): 2186-2193. Meng Runquan, Liu Jiaying, Wen Bo, et al. Hybrid energy storage control and system hierarchical coordinated control strategy for DC microgrids[J]. High Voltage Engineering, 2015, 41(7): 2186-2193. [5] Yang J, Jin X M, Wu X Z, et al. Decentralised control method for DC microgrids with improved current sharing accuracy[J]. IET Generation, Transmission Distribution, 2017, 11(3): 696-706. [6] 丁若星, 董戈, 吴和平, 等. 混合储能系统功率分配效果的表征参数研究[J]. 电工技术学报, 2016, 31(增刊1): 184-189. Ding Ruoxing, Dong Ge, Wu Heping, et al. Research on power sharing results parameterization of hybrid energy storage system[J]. Transactions of China Electrotechnical Society, 2016, 31(S1): 184-189. [7] Lu X N, Sun K, Guerrero J M, et al. Double-quadrant state-of-charge-based droop control method for distributed energy storage systems in autonomous dc microgrids[J]. IEEE Transactions on Smart Grid, 2015, 6(1): 147-157. [8] Lu X N, Sun K, Guerrero J M, et al. State-of-charge balance using adaptive droop control for distributed energy storage systems in dc microgrid appli- cations[J]. IEEE Transactions on Industrial Elec- tronics, 2014, 61(6): 2804-2815. [9] Guan Y, Vasquez J C, Guerrero J M. Coordinated secondary control for balanced discharge rate of energy storage system in islanded AC microgrids[J]. IEEE Transactions on Industry Applications, 2016, 52(6): 5019-5028. [10] Dragicevic T, Guerrero J M, Vasquez J C, et al. Supervisory control of an adaptive-droop regulated dc microgrid with battery management capability[J]. IEEE Transactions on Power Electronics, 2014, 29(2): 695-706. [11] Wu D, Tang F, Dragicevic T, et al. A control archite- cture to coordinate renewable energy sources and energy storage systems in islanded microgrids[J]. IEEE Transactions on Smart Grid, 2015, 6(3): 1156-1166. [12] 杨捷, 金新民, 吴学智, 等. 一种适用于直流微电网的改进型电流负荷分配控制策略[J]. 中国电机工程学报, 2016, 36(1): 59-67. Yang Jie, Jin Xinmin, Wu Xuezhi, et al. An improved load current sharing control method in DC microgrids[J]. Proceedings of the CSEE, 2016, 36(1): 59-67. [13] 张纯江, 董杰, 刘君, 等. 蓄电池与超级电容混合储能系统的控制策略[J]. 电工技术学报, 2014, 29(4): 334-340. Zhang Chunjiang, Dong Jie, Liu Jun, et al. A control strategy for battery-ultracapacitor hybrid energy storage system[J]. Transactions of China Electro- technical Society, 2014, 29(4): 334-340. [14] 田慧雯, 李咸善, 陈铁, 等. 基于混合储能的光伏微网孤网运行的综合控制策略[J]. 电力系统保护与控制, 2014, 42(19): 122-128. Tian Huiwen, Li Xianshan, Chen Tie, et al. Com- prehensive control strategy of hybrid energy storage-based photovoltaic island microgrid[J]. Power System Protection & Control, 2014, 42(19): 122-128. [15] 叶小晖, 刘涛, 吴国旸, 等. 电池储能系统的多时间尺度仿真建模研究及大规模并网特性分析[J]. 中国电机工程学报, 2015, 35(11): 2635-2644. Ye Xiaohui, Liu Tao, Wu Guoyang, et al. Multi-time scale simulation modeling and characteristic analysis of large-scale grid-connected battery energy storage system[J]. Proceedings of the CSEE, 2015, 35(11): 2635-2644. [16] Xiao J, Wang P, Setyawan L. Multilevel energy management system for hybridization of energy storages in DC microgrids[J]. IEEE Transactions on Smart Grid, 2016, 7(2): 847-856. [17] Zhou H, Bhattacharya T, Tran D, et al. Composite energy storage system involving battery and ultracapacitor with dynamic energy management in microgrid applications[J]. IEEE Transactions on Power Electronics, 2011, 26(3): 923-930. [18] Tummuru N R, Mishra M K, Srinivas S. Dynamic energy management of renewable grid integrated hybrid energy storage system[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12): 7728-7737. [19] Mohamed A, Salehi V, Mohammed O. Real-time energy management algorithm for mitigation of pulse loads in hybrid microgrids[J]. IEEE Transactions on Smart Grid, 2012, 3(4): 1911-1922. [20] Salmasi F R. Control strategies for hybrid electric vehicles: evolution, classification, comparison, and future trends[J]. IEEE Transactions on Vehicular Technology, 2007, 56(5): 2393-2404. [21] Glavin M E, Hurley W G. Optimisation of a photo- voltaic battery ultracapacitor hybrid energy storage system[J]. Solar Energy, 2012, 86(10): 3009-3020. [22] 韩晓娟, 陈跃燕, 张浩, 等. 基于小波包分解的混合储能技术在平抑风电场功率波动中的应用[J]. 中国电机工程学报, 2013, 33(19): 8-13. Han Xiaojuan, Chen Yueyan, Zhang Hao, et al. Application of hybrid energy storage technology based on wavelet packet decomposition in smoothing the fluctuations of wind power[J]. Proceedings of the Chinese Society for Electrical Engineering, 2013, 33(19): 8-13. [23] 吴振威, 蒋小平, 马会萌, 等. 用于混合储能平抑光伏波动的小波包-模糊控制[J]. 中国电机工程学报, 2014, 34(3): 317-324. Wu Zhenwei, Jiang Xiaoping, Ma Huimeng, et al. Wavelet packet-fuzzy control of hybrid energy storage systems for PV power smoothing[J]. Pro- ceedings of the CSEE, 2014, 34(3): 317-324. [24] 熊雄, 王江波, 杨仁刚, 等. 微电网中混合储能模糊自适应控制策略[J]. 电网技术, 2015, 39(3): 677-681. Xiong Xiong, Wang Jiangbo, Yang Rengang, et al. A fuzzy adaptive control strategy for composite energy storage system to cope with output power fluctuation of intermittent energy source in microgrid[J]. Power System Technology, 2015, 39(3): 677-681. [25] Moreno J, Ortuzar M E, Dixon J W. Energy- management system for a hybrid electric vehicle, using ultracapacitors and neural networks[J]. IEEE Transactions on Industrial Electronics, 2006, 53(2): 614-623. [26] Shen J, Khaligh A. A supervisory energy management control strategy in a battery/ultracapacitor hybrid energy storage system[J]. IEEE Transactions on Transportation Electrification, 2015, 1(3): 223-231. [27] Hredzak B, Agelidis V G, Jang M. A model predictive control system for a hybrid battery- ultracapacitor power source[J]. IEEE Transactions on Power Electronics, 2014, 29(3): 1469-1479. [28] Garcia-Torres F, Valverde L, Bordons C. Optimal load sharing of hydrogen-based microgrids with hybrid storage using model-predictive control[J]. IEEE Transactions on Industrial Electronics, 2016, 63(8): 4919-4928. [29] Safari S, Ardehali M M, Sirizi M J. Particle swarm optimization based fuzzy logic controller for auto- nomous green power energy system with hydrogen storage[J]. Energy Conversion and Management, 2013, 65: 41-49. [30] Athari M H, Ardehali M M. Operational performance of energy storage as function of electricity prices for on-grid hybrid renewable energy system by optimized fuzzy logic controller[J]. Renewable Energy, 2016, 85: 890-902. [31] Garcia P, Garcia C A, Fernandez L M, et al. ANFIS-based control of a grid-connected hybrid system integrating renewable energies, hydrogen and batteries[J]. IEEE Transactions on Industrial Infor- matics, 2014, 10(2): 1107-1117. [32] Zhang Y, Li Y. Energy management strategy for supercapacitor in autonomous DC microgrid using virtual impedance[C]//Applied Power Electronics Con- ference & Exposition (APEC), Charlotte, USA, 2015. [33] Gu Y J, Li W H, He X N. Frequency-coordinating virtual impedance for autonomous power manage- ment of dc microgrid[J]. IEEE Transactions on Power Electronics, 2015, 30(4): 2328-2337. [34] Augustine S, Mishra M K, Lakshminarasamma N. Adaptive droop control strategy for load sharing and circulating current minimization in low-voltage standalone DC microgrid[J]. IEEE Transactions on Sustainable Energy, 2015, 6(1): 132-141. [35] Gu Y J, Xiang X, Li W H, et al. Mode-adaptive decentralized control for renewable DC microgrid with enhanced reliability and flexibility[J]. IEEE Transactions on Power Electronics, 2014, 29(9): 5072-5080. [36] Morstyn T, Hredzak B, Agelidis V G. Cooperative multi-agent control of heterogeneous storage devices distributed in a DC microgrid[J]. IEEE Transactions on Power Systems, 2016, 31(4): 2974-2986. |
|
|
|