|
|
Composition Analysis of Room Temperature Vulcanized Material with Laser-Induced Breakdown Spectroscopy Technique |
Wang Xilin1, 2, Wang Han1, 2, Zhao Chenlong1, 2, Chen Can1, 2, Jia Zhidong1, Zhou Jun3 |
1. Graduate School at Shenzhen Tsinghua University Shenzhen 518055 China; 2. Department of Electrical Engineering and Applied Electronic Technology;Tsinghua University Beijing 100084 China; 3. China Electric Power Research Institute Beijing 100192 China |
|
|
Abstract Room temperature vulcanized (RTV) silicone rubber has been widely used in electric power industry of China, due to its good performance in anti-pollution flashover. Thermogravimetric (TG), energydispersive X-ray spectroscopy (EDX), fourier translation infrared spectroscopy (FTIR) are the main methods to analyze RTV coatings. But it is difficult to carry out these methods in the field. In this paper, element composition of RTV materials was analyzed using laser-induced breakdown spectroscopy (LIBS). The results showed that, regarding the same kind of RTV, the relationship between ablation depth of the hole in RTV coatings and the number of laser pulses for breakdown was linear, under the same laser frequency characteristic and the same energy per single laser pulse. Thus, the thickness of coatings can be measured through the bombardment number. Bombarding the same position of the material, in-situ analysis could be carried out on old RTV materials. The spectral line intensity of iron, magnesium and other elements decreased with the number of pulses. It can be used for the detection of the ageing depth of RTV coatings. Hence, the composition change could be acquired. As a high sensitivity and suitability on-line analysis method, LIBS is a new tool for RTV statement access analysis.
|
Received: 20 May 2016
Published: 03 January 2017
|
|
|
|
|
[1] 彭波, 王成, 潘洪峰, 等. 基于分段拟合求积分的RTV涂层厚度控制方法研究[J]. 湖南电力, 2014, 34(2): 1-3. Peng Bo, Wang Cheng, Pan Hongfeng, et al. Study on RTV coating thickness control method based on sectional fitting quadrature[J]. Hunan Electric Power, 2014, 34(2): 1-3. [2] 郭浩. 室温硫化涂料的老化及研究新进展[J]. 电力设备, 2006, 7(1): 36-38. Guo Hao. Research on aging and RTV coatings progress[J]. Electric Equipment, 2006, 7(1): 36-38. [3] 屠幼萍, 王倩, 李敏, 等. 臭氧浓度对HTV硅橡胶材料的老化作用[J]. 电工技术学报, 2013, 28(1): 21-28. Tu Youping, Wang Qian, Li Min, et al. Influence of ozone concentration on deterioration of HTV silicon rubber[J]. Transactions of China Electrotechnical Society, 2013, 28(1): 21-28. [4] 汪佛池, 律方成, 杨升杰, 等. 基于FTIR的110kV复合绝缘子硅橡胶伞裙老化性能分析[J]. 电工技术学报, 2015, 30(8): 297-302. Wang Fochi, Lü Fangcheng, Yang Shengjie, et al. The aging characteristic of silicon rubber sheds of 110kV composite insulators based on FTIR test[J]. Transactions of China Electrotechnical Society, 2015, 30(8): 297-302. [5] 黄成才, 李永刚, 汪佛池, 等. 基于电导电流测试的硅橡胶复合绝缘子伞群材料老化特性分析[J]. 电工技术学报, 2016, 31(2): 252-258. Huang Chengcai, Li Yonggang, Wang Fochi, et al. Study on aging characteristics of silicone rubber sheds of composite insulators based on conduction current test[J]. Transactions of China Electro- technical Society, 2016, 31(2): 252-258. [6] 梁英, 靳哲, 刘云鹏, 等. 基于陷阱特性的运行复合绝缘子老化定量评估[J]. 电工技术学报, 2015, 30(18): 189-194. Liang Ying, Jin Zhe, Liu Yunpeng, et al. The quantitative-evaluation on the aging condition of composite insulators based on trap characteristics[J]. Transactions of China Electrotechnical Society, 2015, 30(18): 189-194. [7] 覃永雄, 虞澜, 傅佳, 等. 长波紫外照射下高温硫化硅橡胶的微观物性及憎水性研究[J]. 电工技术学报, 2014, 29(12): 242-249. Qin Yongxiong, Yu Lan, Fu Jia, et al. Research on microscopic properties and hydrophobicity of high temperature vulcanization silicone rubber under long-ware ultraviolet radiation[J]. Transactions of Electrotechnical Society, 2004, 29(12): 242-249. [8] 王天, 卢明, 景冬冬, 等. RTV防污闪涂层老化分析方法[J]. 绝缘材料, 2014, 47(1): 26-29. Wang Tian, Lu Ming, Jing Dongdong, et al. Aging analysis methods review of RTV insulator coating with an-ti-pollution flashover[J]. Insulation Materials, 2014, 47(1): 26-29. [9] 刘建学. 实用近红外光谱分析技术[M]. 北京: 科学出版社, 2008. [10] 成青. 热重分析技术及其在高分子材料领域的应用[J]. 广东化工, 2008, 35(12): 50-52. Cheng Qing. The application of thermogravimetry analytical technology in polymer materials[J]. Guangdong Chemical Industry, 2008, 35(12): 50-52. [11] TRI Guide 92/1. Hydrophobicity classification guide[S]. 1992. [12] 高海峰, 贾志东, 关志成. 运行多年RTV涂料绝缘子表面涂层老化分析研究[J]. 中国电机工程学报, 2005, 25(9): 158-163. Gao Haifeng, Jia Zhidong, Guan Zhicheng. Aging study on RTV coating covered on insulators and energized for many years[J]. Proceedings of the CSEE, 2005, 25(9): 158-163. [13] David W Hahn, Nicolo Omenetto. Laser-induced breakdown spectroscopy(LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community[J]. Applied Spectroscopy, 2010, 64(12): 335A-366A. [14] Nina L Lanza, Samuel M Clegg, Roger C Wiens, et al. Examining natural rock varnish and weathering rinds with laser-induced breakdown spectroscopy for application to ChemCam on Mars[J]. Applied Optics, 2012, 51(7): B74-B82. [15] 庞征. 好奇号降临火星[J]. 太空探索, 2012, 9(9): 16-19. Pang Zheng. Curiosity landed on mars[J]. Space Exploration, 2012, 9(9): 16-19. [16] 王哲, 冯杰, 李政, 等. 提高激光诱导等离子光谱仪测量精度[J]. 清华大学学报(自然科学版), 2010, 50(8): 1263-1266. Wang Zhe, Feng Jie, Li Zheng, et al. Improving the laser-induced breakdown spectroscopy measurement accuracy[J]. Journal of Tsinghua University (Science & Technology), 2010, 50(8): 1263-1266. [17] 樊炬, 王帝, 陆继东, 等. 基于激光诱导击穿光谱的燃煤挥发分定量分析[J]. 广东电力, 2015, 28(9): 7-11. Fan Ju, Wang Di, Lu Jidong, et al. Quantitative analysis on volatile component of fired coal based on laser-induced breakdown spectroscopy[J]. Guangdong Electric Power, 2015, 28(9): 7-11. [18] 李冬玲, 张勇, 鹿锋华. 激光诱导击穿光谱法对焊接接头表面渗铜区铜元素的深度分布分析[J]. 冶金分析, 2015, 35(1): 19-25. Li Dongling, Zhang Yong, Lu Fenghua. Analysis of depth distribution of copper in the surface of the welded joints by laser-induced breakdown spectros- copy[J]. Metallurgical Analysis, 2015, 35(1): 19-25. [19] David W Hahn, Nicolo Omenetto. Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and application to different fields[J]. Applied Spectroscopy, 2012, 66(4): 347-419. [20] 王智宏. 激光诱导击穿光谱(LIBS)技术在矿物元素成份分析中的应用研究[D]. 北京: 北京交通大学, 2007. [21] 陆运章. 用于矿石成分分析的激光诱导击穿光谱定量化测量技术研究[D]. 北京: 北京交通大学, 2009. [22] 黄基松. 土壤中若干重金属元素的激光诱导击穿光谱检测[D]. 金华: 浙江师范大学, 2009. [23] 朱德华. 激光诱导击穿光谱技术检测物质成分的理论应用分析和实验研究[D]. 南京: 南京理工大学, 2012. [24] Konjevi´c N. Plasma broadening and shifting of non-hydrogenic spectral lines: present status and app- lications[J]. Physics Report, 1999, 316(6): 339-401. [25] Delucia F C, Samuels A C, Harmon R S, et al. Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection[J]. IEEE Sensors Journal, 2005, 5(4): 681-689. [26] Lanza N L, Ollila A M, Cousin A, et al. Understanding the signature of rock coatings in laser-induced breakdown spectroscopy data[J]. Icarus, 2015, 249: 62-73. [27] Preuss S, Demchuk A, Stuke M. Sub-picosecond UV laser ablation of metals[J]. Applied Physics A, 1995, 61(1): 33-37. [28] 梁建国. 飞秒激光微加工研究[D]. 天津: 天津大学, 2005. [29] NIST Data Base (2015) [OL]. Available: http://www. physics.nist.gov. |
|
|
|