|
|
Short-Term Wind Speed Combined Prediction for Wind Farms Based on Wavelet Transform |
Tian Zhongda1, Li Shujiang1, Wang Yanhong1, Gao Xianwen2 |
1.College of Information Science and Engineering Shenyang University of Technology Shenyang 110870 China; 2.College of Information Science and Engineering Northeastern University Shenyang 110819 China |
|
|
Abstract In order to improve short-term wind speed prediction accuracy of wind farms,a combined prediction method based on the wavelet transform is proposed.Firstly,the db3 wavelet is used for three-layer decomposition and reconstruction for short-term wind speed time series through Mallat algorithm.The approximation components and the detail components of the short-term wind speed are then obtained.Next,according to the different characteristics of these components,the least square support vector machine optimized by particle swarm algorithm and the autoregressive integrated moving average model are adopted as the predictive models for the approximate components and the detail components respectively.Then,the final predictive value of the short-term wind speed is obtained by the combination of the two components.The simulation results indicate that higher accuracy can be obtained in this prediction method.
|
Received: 04 December 2014
Published: 22 May 2015
|
|
|
|
|
[1] 修春波,刘新婷,张欣,等.基于混沌特性分析的风速序列混合预测方法[J].电力系统保护与控制,2013,41(1):14-20. Xiu Chunbo,Liu Xinting,Zhang Xin,et al.Hybrid prediction method of wind speed based on chaotic characteristic[J].Power System Protection and Control,2013,41(1):14-20. [2] 杨锡运,孙宝君,张新房,等.基于相似数据的支持向量机短期风速预测仿真研究[J].中国电机工程学报,2012,32(4):35-41. Yang Xiyun,Sun Baojun,Zhang Xinfang,et al.Short-term wind speed forecasting based on support vector machine with similar data[J].Proceedings of the CSEE,2012,32(4):35-41. [3] Bouzgou H,Benoudjit N.Multiple architecture system for wind speed prediction[J].Applied Energy,2011,88(7):2463-2471. [4] Ma Lei,Luan Shiyan,Jiang Chuanwen,et al.A review on the forecasting of wind speed and generated power[J].Renewable and Sustainable Energy Reviews,2009,13(4):915-920. [5] Pelikan E,Eben K,Resler J,et al.Wind power forecasting by an empirical model using NWP outputs[C].2010 9th International Conference on Environment and Electrical Engineering,Prague,Czech,2010:45-48. [6] Cuo Lan,Zhang Yongxin,Wang Qingchun,et al.Climate change on the northern Tibetan Plateau during 1957-2009:spatial patterns and possible mechanisms[J].Journal of Climate,2013,26(1):85-109. [7] Erdem E,Shi J.ARMA based approaches for forecasting the tuple of wind speed and direction[J].Applied Energy,2011,88(4):1405-1414. [8] 蒋金良,林广明.基于ARIMA模型的自动站风速预测[J].控制理论与应用,2008,25(2):374-376. Jiang Jinliang,Lin Guangming.Automatic station wind speed forecasting based on ARIMA model[J].Control Theory & Applications,2008,25(2):374-376. [9] Liu Hui,Tian Hongqi,Li Yanfei.Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction[J].Applied Energy,2012,98:415-424. [10]Xiao Hongfei,Ding Tao.Chaotic prediction method of short-term wind speed[C].Proceedings of the 2011 International Conference on Informatics,Cybernetics,and Computer Engineering,Melbourne,Australia,2012,112:479-487. [11]Soman S S,Zareipour H,Malik O,et al.A review of wind power and wind speed forecasting methods with different time horizons[C].North American Power Symposium(NAPS),2010,Arlington,TX,2010:1-8. [12]李汉东,张世英.随机波动模型的持续性和协同持续性研究[J].系统工程学报,2002,17(4):289-295. Li Handong,Zhang Shiying.Research on volatility persistence and co-persistence in stochastic volatility model[J].Journal of Systems Engineering,2002,17(4):289-295. [13]吴武清,李东,潘松,等.三阶段均值回复、TAR及其应用[J].系统工程理论与实践,2013,33(4):901-909. Wu Wuqing,Li Dong,Pan Song,et al.Three-regime mean reversion、TAR and its application[J].System Engineering-Theory & Practice,2013,33(4):901-909. [14]Tersvirta T.Specification,estimation,and evaluation of smooth transition autoregressive models[J].Journal of the american Statistical association,1994,89(425):208-218. [15]陈妮亚,钱政,孟晓风,等.基于空间相关法的风电场风速多步预测模型[J].电工技术学报,2013,28(5):15-21. Chen Niya,Qian Zheng,Meng Xiaofeng,et al.Multi-step ahead wind speed forecasting model based on spatial correlation and support vector machine[J].Transactions of China Electrotechnical Society,2013,28(5):15-21. [16]Wang Y,Wu D L,Guo C X,et al.Short-term wind speed prediction using support vector regression[C].IEEE Power and Energy Society General Meeting,Minneapolis,MN,2010:1-6. [17]Li X,Wang X,Zheng Y H,et al.Short-term wind power forecasting based on least-square support vector machine (LSSVM)[J].Applied Mechanics and Materials,2014,448-453:1825-1828. [18]曾杰,张华.基于蚁群优化的最小二乘支持向量机风速预测模型研究[J].太阳能学报,2011,32(3):296-300. Zeng Jie,Zhang Hua.Wind speed forecasting model study based on least squares support vector machine and ant colony optimization[J].Acta Energiae Solaris Sinica,2011,32(3):296-300. [19]Louka P,Galanis G,Siebert N,et al.Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering[J].Journal of Wind Engineering and Industrial Aerodynamics,2008,96(12):2348-2362. [20]刘进宝,丁涛.基于径向基函数神经网络的风速预测[J].太阳能学报,2012,33(7):1131-1135. Liu Jinbao,Ding Tao.Wind speed prediction model based on radial basis functional neural network[J].Acta Energiae Solaris Sinica,2012,33(7):1131-1135. [21]Fourati F,Chtourou M.A greenhouse control with feed-forward and recurrent neural networks[J].Simulation Modelling Practice and Theory,2007,15(8):1016-1028. [22]Bates J M,Granger C W J.The combination of forecasts[J].Operations Research Quarterly,1969,20(4):415-468. [23]Granger C W J.Some thoughts on the development of cointegration[J].Journal of Econometrics,2010,158(1):3-6. [24]魏永涛,汪晋宽,王翠荣,等.基于小波变换与组合模型的网络流量预测算法[J].东北大学学报(自然科学版),2011,32(10):1382-1385. Wei Yongtao,Wang Jinkuan,Wang Cuirong,et al.Network traffic prediction algorithm based on wavelet transform and combined model[J].Journal of Northeastern University,2011,32(10):1382-1385. [25]Mallat S.A Wavelet Tour of Signal Processing[M].2nd ed.New York:Academic Press,1999. [26]Qian B,Rasheed K.Hurst exponent and financial market predictability[C].Proceedings of The 2nd IASTED international conference on financial engineering and applications,Cambridge,MA,2004:203-209. [27]田中大,高宪文,李琨.基于EMD与LS-SVM的网络控制系统时延预测方法[J].电子学报,2014,42(2):868-874. Tian Zhongda,Gao Xianwen,Li Kun.Time-delay prediction method of networked control system based on EMD and LS-SVM[J].Acta Electronica Sinica,2014,42(2):868-874. [28]王振雷,唐苦,王昕.一种基于D-S和ARIMA的多模型软测量方法[J].控制与决策,2014,29(7):1160-1166. Wang Zhenlei,Tang Ku,Wang Xin.A multi-model soft sensing method based on D-S and ARIMA model[J].Control and Decision,2014,29(7):1160-1166. [29]田中大,高宪文,石彤.用于混沌时间序列预测的组合核函数最小二乘支持向量机[J].物理学报,2014,63(16):160501-160508. Tian Zhongda,Gao Xianwen,Shi Tong.Combination kernel function least squares support vector machine for chaotic time series prediction[J].Acta Physica Sinica,2014,63(16):160501-160508. [30]田中大,高宪文,李琨.基于预测控制的NCS时延补偿算法[J].系统工程与电子技术,2013,35(10):2165-2169. Tian Zhongda,Gao Xianwen,Li Kun.Networked control system time-delay compensation algorithm based on predictive control[J].System Engineering and Electronics,2013,35(10):2165-2169. |
|
|
|