|
|
Research on the Electric Grid Dispatch for Alleviating the Uncertainties Impact through Gas-Fired Cogenerations and Heat Pumps |
Long Hongyu1, 2, Fu Lin2, Xu Ruilin3, Huang Yue4, Cui Hui4 |
1. Southwest University Chongqing 400715 China; 2. Tsinghua University Beijing 100084 China; 3. State Grid Chongqing Electric Power Co. Electric Power Research Institute Chongqing 401123 China; 4. China Electric Power Research Institute Beijing 100192 China |
|
|
Abstract The electric grid suffers more and more uncertainty impacts. One arises from load forecasting; the other is from intermittence and volatility of wind power and photovoltaic power. In this article, a new dispatch proposal based on smart grid is presented, which can adjust the electricity and heating generation of power sources. Considering mass introduction of water source heat pumps and heating networks as heating storage infrastructure, the transportation distance of heating water between power sources and end users as well as the electric load for heat pumps is added in this mathematical model. The same electric load following is revealed with various coefficients of performance (COP). However, the bigger COP is, the better energy-saving effect is. With regards to the minimum fluctuation of equivalent power of intermittent power sources, the numerical simulation suggests that the dispatch proposal can smooth the equivalent output of intermittence power generation. Besides, the heating load of the remote distribution achieves better energy conservation, up to 3%.
|
Received: 14 June 2014
Published: 30 October 2015
|
|
|
|
|
[1] 邹刚. 基于蚁群算法的电力负荷预测方法研究[D]. 重庆: 重庆大学, 2006. [2] 梁亮, 李建林, 惠东. 光伏-储能联合发电系统运行机理及控制策略[J]. 电力自动化设备, 2011, 31(8): 20-23. Liang Liang, Li Jianlin, Hui Dong. Operating mode of photovoltaic/energy-storage hybird sytem and its control strategy[J]. Electric Power Automation Equipment, 2011, 31(8): 20-23. [3] 邱培春, 葛宝明, 毕大强. 基于蓄电池储能的光伏并网发电功率平抑控制研究[J].电力系统保护与控制, 2011, 39(3): 29-33. Qiu Peichun, Ge Baoming, Bi Daqing. Battery energu storaged-based power stabilizing control for grid-connected photovoltaic power generation system[J]. Power System Protection and Control, 2011, 39(3): 29-33. [4] 李国杰, 唐志伟, 聂宏展, 等. 钒液流储能电池建模及其平抑风电波动研究[J].电力系统保护与控制, 2010, 38(22): 115-119. Li Guojie, Tang Zhiwei, Nie Hongzhan, et al. Modelling and controlling of vanadium redox flow battery to smooth wind power fluctuations[J]. Power System Protection and Control, 2010, 38(22): 115-119. [5] 张占奎, 王德意, 迟永宁, 等. 超导储能装置提高风电场暂态稳定性的研究[J]. 电力系统保护与控制, 2010, 38(24): 38-42. Zhang Zhankui, Wang Deyi, Chi Yongning, et al. Study of transient stability enhancement of wind farm by application of superconducting magnetic energy storage devices[J]. Power System Protection and Control, 2010, 38(24): 38-42. [6] 韩涛, 卢继平, 乔梁, 等. 大型并网风电场储能容量优化方案[J].电网技术, 2010, 34(1): 169-173. Han Tao, Lu Jiping, Qiao Liang, et al. Optimized scheme of energy-storage capacity for grid-connected large-scale wind farm[J]. Power System Technology, 2010, 34(1): 169-173. [7] 张鹏, 刘继春, 吕林. 基于风蓄协调的节能调度方法[J]. 电力系统保护与控制, 2011, 39(2): 29-34. Zhang Peng, Liu Jichun, Lü Lin. The energy-saving dispatch based on the coordination between pumped storage hydro and wind energy[J]. Power System Protection and Control, 2011, 39(2): 29-34. [8] 肖创英, 汪宁渤, 丁坤, 等. 甘肃酒泉风电功率调节方式的研究[J].中国电机工程学报, 2010, 30(10): 1-7. Xiao Chuangying, Wang Ningbo, Ding Kun, et al. System power regulation scheme for jiuquan wind power base[J]. Proceedings of the CSEE, 2010, 30(10): 1-7. [9] 葛荣. 燃气-蒸汽联合循环电厂机组组合优化及负荷经济分配研究[D]. 北京: 清华大学, 2008. [10] 付林. 热电(冷)联产系统电力调峰运行研究[D]. 北京: 清华大学, 2000. [11] 程靖. 威布尔分布的参数估计[J]. 巢湖学院学报, 2007, 9(3): 20-23. Cheng Jing. Parameters estimation in Weibull distribution[J]. Journal of Chaohu College, 2007, 9(3): 20-23. |
|
|
|