1.Wuhan University Wuhan 430072 China; 2. Central South University Changsha 410083 China; 3. Hunan University of Science and Technology Xiangtan 411201 China
Abstract The random perturbation of power load can influence the accuracy of load model. By considering the measurement error and random perturbation of power load as an unknown-but-bounded (UBB) error, a load modeling method was proposed based on the Hardy space theory and Carathéodory-Fejér interpolation (CFI). The load model was mapped into linear load model set with prior information in Hardy space. Consistency problem between measured data and model set was formulated to a linear matrix inequality. The feasible solution here was used to construct a high-order transfer function. Simulation results show that when the random perturbation error range from 1%~10%, the output root mean square error(RMSE)is below 0.03, and the model can still match the output well under inaccurate UBB error boundary. The variations of load composition in a certain scale have little effect on model parameters. Simulations using measured data from the phase measurement unit in a power station demonstrate the practicality and validation of the proposed method when exiting UBB error.
[1] Kosterev D N, Taylor C W, Mittelstadt W A. Model validation for the August 10, 1996 WSCC system outage[J]. IEEE Transactions on Power Systems, 1999, 14(3): 967-979. [2] Maitra A, Gaikwad A, Zhang P, et al. Using system disturbance measurement data to develop improved load models[C]//Power Systems Conference and Exposition, PSCE'06, 2006: 1978-1985. [3] Kim B H, Kim H. Measurement-based estimation of the composite load model parameters[J]. Journal of Electrical Engineering & Technology, 2012, 7(6): 845-851. [4] 李欣然, 钱军, 王立德, 等. 配电网集结等效的异步电动机综合负荷模型及其总体测辨建模[J]. 电工技术学报, 2009, 24(4): 175-185. Li Xinran, Qian Jun, Wang Lide, et al. Synthesis induction motor model of power composite load considering distribution network structure[J]. Transactions of China Electrotechnical Society, 2009, 24(4): 175-185. [5] 韩冬, 马进, 贺仁睦. 基于Bootstrap的实测负荷模型参数优选[J]. 电工技术学报, 2012, 27(8): 141-146. Han Dong, Ma Jin, He Rengmu. Parameter optimization of measurement-based load model based on Bootstrap[J]. Transactions of China Electrotechnical Society, 2012, 27(8): 141-146. [6] 宋人杰, 李文明. 一种提高静态负荷模型参数辨识精度方法的研究[J]. 电力系统保护与控制, 2013, 41(6): 89-92. Song Renjie, Li Wenming. Research on improving the precision of static load model parameter identification[J]. Power System Protection and Control, 2013, 41(6): 89-92. [7] 黄玉龙, 陈迅, 刘明波, 等. 动态负荷模型参数辨识的微分进化算法[J]. 电工技术学报, 2013, 28(11): 270-277. Huang Yulong, Chen Xun, Liu Mingbo, et al. Differential evolution algorithm for dynamic load model parameter identification[J]. Transactions of China Electrotechnical Society, 2013, 28(11): 270-277. [8] Visconti I F, Lima D A, Costa J, et al. Measurement-based load modeling using transfer functions for dynamic simulations[J]. IEEE Transactions on Power Systems, 2014, 29(1): 111-120. [9] 张红斌, 汤涌, 李柏青. 差分方程负荷模型参数分散性的研究[J]. 中国电机工程学报, 2006, 26(18): 1-5. Zhang Hongbing, Tang Yong, Li Boqing. Study on dispersing of difference equation load model parameters[J]. Proceedings of the CSEE, 2006, 26(18): 1-5. [10] 肖锋, 李欣然, 王立德, 等. 基于神经网络的并行差分方程综合负荷模型[J]. 电力系统及其自动化学报, 2009, 21(1): 41-47. Xiao Feng, Li Xinran, Wang Lide, et al. Parallel difference equations load model based on neural network[J]. Proceedings of the CSU-EPSA, 2009, 21(1): 41-47. [11] Yang J, Wu M, He Y, et al. Identification and application of nonlinear dynamic load models[J]. Journal of Control Theory and Applications, 2013, 11(2): 173-179. [12] Kim Y G, Song H, Kim H R, et al. Particle swarm optimization based load model parameter identifi- cation[C]. IEEE Power and Energy Society General Meeting, 2010: 1-6. [13] Hain Y, Kulessky R, Nudelman G. Identification-based power unit model for load-frequency control purposes[J]. IEEE Transactions on Power Systems, 2000, 15(4): 1313-1321. [14] 熊传平, 曹军杰, 陈谦. 基于小波分析的电力负荷模型辨识数据去噪[J]. 河海大学学报(自然科学版), 2011, 39(4): 470-474. Xiong Chuanpin, Cao Junjie, Chen Qian. A wavelet- based method for de-noising data of electric load modeling[J]. Journal of Hohai University (Natural Sciences) 2011, 39(4): 470-474. [15] Milanese M, Belforte G. Estimation theory and uncertainty intervals evaluation in presence of unknown but bounded errors: linear families of models and estimators[J]. IEEE Transactions on Automatic Control, 1982, 27(2): 408-414. [16] Rosenblum M, Rovnyak J. Hardy classes and operator theory[M]. NewYork: Clarendon Press Oxford University Press, 1997. [17] Adamjan V M, Arov D Z, Kreĭn M G. Analytic properties of Schmidt pairs for a Hankel operator and the generalized Schur-Takagi problem[J]. Sbornik: Mathematics, 1971, 15(1): 31-73. [18] 丁思奇, 曼苏乐, 胡志勇, 等. 基于鲁棒 H ∞ 控制的静止同步补偿器研究[J]. 电力系统保护与控制, 2012, 40(13): 98-103. Ding Siqi, Man Sule, Hu Zhiyong, et al. Study of STATCOM based on robust H ∞ controller[J]. Power System Protection and Control, 2012, 40(13): 98-103. [19] Ying S, Ge T, Ai J. H ∞ parameter identification and H 2 feedback control synthesizing for inflight aircraft icing[J]. Journal of Shanghai Jiaotong University (Science), 2013, 18(3): 317-325. [20] 周克敏, 多伊尔, 格洛弗, 等. 鲁棒与最优控制[M]. 北京: 国防工业出版社, 2002. [21] Nikolov N, Pflug P, Thomas P J. Spectral Nevanlinna-Pick and Carathéodory-Fejér problems for n ≤3[J]. Indiana University Mathematics Journal, 2011, 60(3): 883-893. [22] Bolotnikov V. On the Carathéodory-Fejér interpolation problem for generalized Schur functions[J]. Integral Equations and Operator Theory, 2004, 50(1): 9-41. [23] Chen J, Nett C N. The Carathéodory-Fejér problem and H ∞ identification: a time domain approach[C]. Proceedings of the 32nd IEEE Conference on Decision and Control, 1993: 68-73. [24] 俞立. 鲁棒控制: 线性矩阵不等式处理方法[M]. 北京: 清华大学出版社, 2002. [25] 王振树, 李林川, 牛丽. 基于贝叶斯证据框架的支持向量机负荷建模[J]. 电工技术学报, 2009, 24(8): 127-134. Wang Zhenshu, Li Linchuan, Niu Li. Load modeling based on support vector machine based on Bayesian evidence framework[J]. Transactions of China Electro-technical Society, 2009, 24(8): 127-134. [26] 章健. 电力系统负荷模型与辨识[M]. 北京: 中国电力出版社, 2007. [27] 李欣然, 徐振华, 宋军英, 等. 基于功率空间的分时段负荷模型参数在线修正[J]. 电工技术学报, 2012, 27(8): 147-156. Li Xinran, Xu Zhenhua, Song Junying, et al. On-line revising algorithm for load model parameters of substation in different daily periods based on the measured active power[J]. Transactions of China Electrotechnical Society, 2012, 27(8): 147-156. [28] 陈迁, 徐箭, 孙元章, 等. 考虑气温影响的负荷模型参数不确定性建模[J]. 电力自动化设备, 2011, 31(10): 17-22. Chen Qian, Xu Jian, Sun Yuanzhang, et al. Model of liad model parameter uncertainty considering temperature[J]. Electric Power Automation Equipment, 2011, 31(10): 17-22. [29] 王茂海, 鲍捷, 齐霞, 等. 相量测量装置(PMU)动态测量精度在线检验[J]. 电力系统保护与控制, 2009, 37(10): 48-52. Wang Maohai, Bao Jie, Qi Xia, et al. Online assess- ment of phasor measurement unit's performance based on sample data[J]. Power System Protection and Control, 2009, 37(10): 48-52. [30] 毕天姝, 刘灏, 杨奇逊. PMU算法动态性能及其测试系统[J]. 电力系统自动化, 2014, 38(1): 62-67. Bi Tianshu, Liu Hao, Yang Qixun. Dynamic perfor- mance of PMU algorithm and its testing system[J]. Automation of Electric Power Systems, 2014, 38(1): 62-67.