|
|
Research on Grid-Connected Control Method for FESS Based on Back-to-Back Converter |
Liu Wenjun,Tang Xisheng,Zhou Long,Qi Zhiping |
Institute of Electrical Engineering, Chinese Academy of Sciences Beijing 100190 China |
|
|
Abstract A dual-PWM (pulse width modulation) converter with a LCL filter is adopted as an energy exchange interface between flywheel motor and power system. Then a grid-connected control method for FESS is proposed. It is composed of grid-side converter control loop and motor-side converter control loop. The control process includes charge, pre-grid-connected and grid-connected stages. At charge and pre-grid-connected stages, only the six uncontrolled diodes work in the grid-side converter. While the motor-side converter adopts an outer speed loop at charge stage, and adopts an outer DC-bus voltage loop at pre-grid-connected stage. At grid-connected stage, the control of grid-side converter adopts the direct power control strategy based on a grid-side current loop cascaded with an inner converter-side current loop, and thus determines the magnitude and flow direction of grid- connected active power; the control of motor-side converter is based on an outer DC-bus voltage loop cascaded with an internal current loop, and maintains the DC-bus voltage. The parameters of motor- side current controller and DC-bus voltage controller are designed using the zero-pole offset order- reduction method and symmetric optimum function equivalency method respectively. Experiments at charge, pre-grid-connected and grid-connected stages have been conducted. Experimental results validate the feasibility of the proposed method.
|
Received: 10 July 2013
Published: 14 September 2015
|
|
|
|
|
[1] Kenny B H, Kascak P E, Jansen R, et al. Control of a high-speed flywheel system for energy storage in space applications[J]. IEEE Transactions on Industry App- lications, 2005, 41(4): 1029-1038. [2] 程时杰, 余文辉, 文劲宇, 等. 储能技术及其在电力系统稳定控制中的应用[J]. 电网技术, 2007, 31(20): 97-108. Cheng Shijie, Yu Wenhui, Wen Jinyu, et al. Energy storage and its application in power system stability enhancement[J]. Power System Technology, 2007, 31(20): 97-108. [3] 戴兴建, 邓占峰, 刘刚, 等. 大容量先进飞轮储能电源技术发展状况[J]. 电工技术学报, 2011, 26(7): 133-140. Dai Xingjian, Deng Zhanfeng, Liu Gang, et al. Review on advanced flywheel energy storage system with large scale[J]. Transactions of China Electrotechnical Society, 2011, 26(7): 133-140. [4] 邓自刚, 王家素, 王素玉, 等. 高温超导飞轮储能技术发展现状[J]. 电工技术学报, 2008, 23(12): 1-10. Deng Zigang, Wang Jiasu, Wang Suyu, et al. Status of high Tc superconducting flywheel energy storage system [J]. Transactions of China Electrotechnical Society, 2008, 23(12): 1-10. [5] 张维煜, 朱熀秋. 飞轮储能关键技术及其发展现状[J]. 电工技术学报, 2011, 26(7): 141-146. Zhang Weiyu, Zhu Huangqiu. Key technologies and development status of flywheel energy storage system [J]. Transactions of China Electrotechnical Society, 2011, 26(7): 141-146. [6] 孙春顺, 王耀南, 李欣然. 飞轮辅助的风力发电系统功率和频率综合控制[J]. 中国电机工程学报, 2008, 28(29): 111-116. Sun Chunshun, Wang Yaonan, Li Xinran. Synthesized power and frequency control of wind power generation system assisted through flywheels[J]. Proceedings of the CSEE, 2008, 28(29): 111-116. [7] 姬联涛, 张建成. 基于飞轮储能技术的可再生能源发电系统广义动量补偿控制研究[J]. 中国电机工程学报, 2010, 30(24): 101-106. Ji Liantao, Zhang Jiancheng. Research on generalized momentum compensation method of flywheel energy storage in renewable energy power system[J]. Procee- dings of the CSEE, 2010, 30(24): 101-106. [8] Wang L, Yu J Y, Chen Y T. Dynamic stability improve- ment of an integrated offshore wind and marine-current farm using a flywheel energy-storage system[J]. IET Renewable Power Generation, 2011, 5(5): 387-396. [9] Lazarewicz M L, Rojas A. Grid frequency regulation by recycling electrical energy in flywheels[C]. Procee- dings of the IEEE Power Engineering Society General Meeting, 2004. [10] Cimuca G, Breban S, Radulescu M M, et al. Design and control strategies of an induction-machine-based flywheel energy storage system associated to a variable- speed wind generator[J]. IEEE Transactions on Energy Conversion, 2010, 25(2): 526-534. [11] Cimuca G O, Saudemont C, Robyns B, et al. Control and performance evaluation of a flywheel energy- storage system associated to a variable-speed wind generator[J]. IEEE Transactions on Industrial Elec- tronics, 2006, 53(4): 1074-1085. [12] 戴鹏, 朱方田, 朱荣伍, 等. 电容电流直接控制的双PWM协调控制策略[J]. 电工技术学报, 2011, 26(S1): 136-141. Dai Peng, Zhu Fangtian, Zhu Rongwu, et al. Direct control of capacitor current for AC-DC-AC PWM converter[J]. Transactions of China Electrotechnical Society, 2011, 26(S1): 136-141. [13] 李时杰, 李耀华, 陈睿. 背靠背变流系统中优化前馈控制策略的研究[J]. 中国电机工程学报, 2006, 26(22): 74-79. Li Shijie, Li Yaohua, Chen Rui. Study of the optimum feed-forward control strategy in back-to-back converter system[J]. Proceedings of the CSEE, 2006, 26(22): 74-79. [14] 向荣, 王晓茹, 谭谨. 基于飞轮储能的并网风电场有功功率及频率控制方法研究[J]. 系统科学与数学, 2012, 32(4): 438-449. Xiang Rong, Wang Xiaoru, Tan Jin. Operation control of flywheel energy storage system applying to wind farm[J]. Journal of Systems Science and Mathematical Sciences, 2012, 32(4): 438-449. [15] Xu Song, Wang Haifeng. Simulation and analysis of back- to-back PWM converter for flywheel energy storage system[C]. Proceedings of 2012 15th Inter-national Conference on the Electrical Machines and Systems(ICEMS), 2012: 1-5. [16] Suvire G, Mercado P. Dstatcom with flywheel energy storage system for wind energy applications: control design and simulation[J]. Electric Power Systems Research, 2010, 80(3): 345-353. [17] Suvire G O, Mercado P E. Active power control of a flywheel energy storage system for wind energy applications[J]. IET Renewable Power Generation, 2012, 6(1): 9-16. [18] Suvire G O, Molina M G, Mercado P E. Improving the integration of wind power generation into AC microgrids using flywheel energy storage[J]. IEEE Transactions on Smart Grid, 2012, 3(4): 1945-1954. [19] Suvire G O, Mercado P E. Combined control of a distribution static synchronous compensator/flywheel energy storage system for wind energy applications[J]. IET Generation, Transmission & Distribution, 2012, 6(6): 483-492. [20] Yi T, Poh Chiang L, Peng W, et al. Exploring inherent damping characteristic of LCL-filters for three-phase grid-connected voltage source inverters[J]. IEEE Transactions on Power Electronics, 2012, 27(3): 1433- 1443. [21] Teodorescu R, Blaabjerg F, Liserre M, et al. Propor- tional-resonant controllers and filters for grid-connected voltage-source converters[J]. IEE Proceedings of Electric Power Applications, 2006, 153(5): 750-762. [22] Bolsens B, DE Brabandere K, Van Den Keybus J, et al. Model-based generation of low distortion currents in grid-coupled PWM-inverters using an LCL output filter[J]. IEEE Transactions on Power Electronics, 2006, 21(4): 1032-1040. [23] 徐志英, 许爱国, 谢少军. 采用LCL滤波器的并网逆变器双闭环入网电流控制技术[J]. 中国电机工程学报, 2009, 29(27): 36-41. Xu Zhiying, Xu Aiguo, Xie Shaojun. Dual-loop grid current control technique for grid-connected inverter using an LCL filter[J]. Proceedings of the CSEE, 2009, 29(27): 36-41. [24] 白志红, 阮新波, 徐林. 基于LCL滤波器的并网逆变器的控制策略[J]. 电工技术学报, 2011, 26(S1): 118-124. Bai Zhihong, Ruan Xinbo, Xu Lin, et al. Control strategies for the grid-connected inverter with LCL filter[J]. Transactions of China Electrotechnical Society, 2011, 26(S1): 118-124. [25] 胡雪峰, 韦徵, 陈轶涵, 等. LCL滤波并网逆变器的控制策略[J]. 中国电机工程学报, 2012, 32(27): 142-148. Hu Xuefeng, Wei Zheng, Chen Yihan, et al. A control strategy for grid-connected inverters with LCL filters [J]. Proceedings of the CSEE, 2012, 32(27): 142-148. |
|
|
|