|
|
A New Filter and Detection Approach of Fault in Asynchronous Motor Based on Improved Matrix Pencil |
Wang Zhen1,2,Li Cheng1,2,Zhang Shunqin3,Wang Lei2,Chen Xu2,Li Huizhang2 |
1. State Key Laboratory of Advanced Electromagnetic Engineering and Technology Wuhan 430074 China; 2. Huazhong University of Science and Technology Wuhan 430074 China; 3. Shandong Electric Power Engineering Consulting Institute Corp Jinan 250013 China |
|
|
Abstract In the current fault diagnosis technology in asynchronous motors, the fault characteristic frequency of broken bar is easily drown by the fundamental frequency, and frequency resolution for short time date is low. Besides, mixed fault easily lead into cross interfere due to square calculation. In order to solving the above problems, a novel method for Fault Diagnosis of asynchronous motor based on the improved MP algorithm was proposed. Fist of all, by the singular value decomposition(SVD) of Hankle marxic,which was construed by stator current signal, different signal subspace were easily obtained. secondly, fundamental frequency and noise were eliminated by adjusting part singular value to zero. Then, the parameters of fault characteristic frequency can be accurately estimated. Finally, the definition of fault serious factor was given from the amplitudes of fault characteristic frequency which was received by utilizing the improved MP. The experimental results of broken rotor bars and eccentric fault shows that the method instead of FFT filters the fundamental frequency and noise, which breaks through the limited resolution of traditional based on FFT analysis
|
Received: 10 September 2014
Published: 14 September 2015
|
|
|
|
|
[1] 李天云, 李光, 杨春玲, 等. 基于自适应随机共振的异步电机转子断条故障检测[J]. 中国电机工程学报, 2007, 27(15): 88-92. Li Tianyun, Li Guang, Yang Chunling, et al. New approach of broken rotor bar detection in induction motor based on adaptive stochastic resonance[J]. Proceedings of the CSEE, 2007, 27(15): 88-92. [2] 杨伟, 顾明星, 彭静萍. 证据理论在电机故障诊断中的应用[J]. 电力系统保护与控制, 2010, 38(2): 64-67. Yang Wei, Gu Mingxing, Peng Jingping. Application of evidence theory in fault diagnosis for electric machine[J]. Power System Protection and Control, 2010, 38(2): 64 -67. [3] Liu Zhenxing, Yin Xianggen, Zhang Zhe, et al. Online rotormixed fault diagnosis way based on spectrum analysis of instantaneous power in squirrel cage induction motors[J]. Energy Conversion of IEEE, 2004, 19(3): 485-490. [4] 许允之, 方磊, 张建文. 基于最小二乘支持向量机的电机故障鉴别[J]. 电力系统保护与控制, 2012, 40(14): 63-68. Xu Yunzhi, Fang Lei, Zhang Jianwen. Motor fault identification based on least squares support vector machine[J]. Power System Protection and Control, 2012, 40 (14): 63-68. [5] 张雄希, 刘振兴. 基于倒频谱分析的电机故障检测[J]. 电力系统保护与控制, 2010, 38(20): 145-147. Zhang Xiongxi, Liu Zhenxing. Fault detection for motor based on cepstrum analysis[J]. Power System Protection and Control, 2010, 38 (20): 145-147. [6] Cruz S M A, Cardoso A J M. Stator winding fault diagnosis in three-phase synchronous and asynchronous motors by the extend Park’s vector approach[J]. IEEE Transactions on Industry Applications, 2001, 37(5): 1227-1233. [7] 马宏忠, 姚华阳, 黎华敏. 基于Hilbert模量频谱分析的异步电机转子断条故障研究[J]. 电机与控制学报, 2009, 13(3): 371-376. Ma Hongzhong, Yao Huayang, Li Huamin. Study on rotor broken-bars fault in induction motors based on spectrum analysis of Hilbert modulus. Electric machines and control, 2009, 13(3): 371-376. [8] 刘振兴, 张哲, 尹项根, 等. 一种新型的笼型异步电动机转子故障在线监测和诊断方法[J]. 电工技术学报, 2002, 17(4): 89-92. Liu Zhenxing, Zhang Zhe, Yi Xianggen, et al. A new approach of on-line condition and fault diagnosis for the squirrel-cage induction motor. Transactions of China Electrotechnical Society, 2002, 17(4): 89-92. [9] 黄进, 牛发亮, 杨家强. 基于双PQ变换的感应电机转子故障诊断[J]. 中国电机工程学报, 2006, 26(13): 135-139. Huang Jin, Niu Faliang, Yang Jiaqiang. Rotor faults diagnosis for induction motors based on the double PQ transform[J]. Proceedings of the CSEE, 2006, 26(13): 135-139. [10] 梁霖, 徐光华, 刘弹等. 小波-奇异值分解在异步电机转子故障特征提取中的应用[J]. 中国电机工程学报, 2005, 25(19): 111-115. Liang Lin, Xu Guanghua, Liu Dan et al. A feature extraction method of rotor faults of induction motor based on continuous wavelet transform and singular value decomposition[J]. Proceedings of the CSEE, 2005, 25(19): 111-115. [11] 方芳, 杨士元, 侯新国等. Zoom-Prony方法及其在转子断条故障严重程度定量估算中的应用[J]. 电工技术学报, 2009, 24(10): 176-182. Fang Fang, Yang Shiyuan, Hou Xinguo et al. Zoom- prony’s method and its application in quantitative evaluation of induction machine rotor broken-bar fault[J]. Transactions of China Electrotechnical Society, 2009, 24(10): 176-182. [12] 王攀攀, 史丽萍, 张勇, 等. 采用一种混合骨干微粒群优化算法的感应电机转子断条故障诊断[J]. 中国电机工程学报, 2012, 32(30): 73-81. Wang Panpan, Shi Liping, Zhang Yong et al. Broken Rotor Bar Fault Diagnosis of Induction Motors Using a Hybrid Bare-bones Particle Swarm Optimization Algorithm[J]. Proceedings of the CSEE, 2012, 32(30): 73-81 [13] 史丽萍, 王攀攀, 胡泳军, 等. 基于骨干微粒群算法和支持向量机的电机转子断条故障诊断[J]. 电工技术学报, 2014, 29(1): 147-155. Shi Liping Wang Panpan Hu Yongjun Han Li. Broken Rotor Bar Fault Diagnosis of Induction Motors Based on Bare-Bone Particle Swarm Optimization and Support Vector Machine[J]. Transactions of China Electrotechnical Society, 2014, 29(1): 147-155. [14] 牛发亮, 黄进, 杨家强, 等. 基于感应电机启动电磁转矩Hilbert-Huang变换的转子断条故障诊断[J]. 中国电机工程学报, 2005, 25(11): 107-112. Niu Faliang, Huang Jin, Yang Jiaqiang, et al. Rotor broken-bars fault diagnosis of induction motor based on Hilbert-Hung transformation of the starting electromagnetic torque[J]. Proceedings of the CSEE, 2005, 25(11): 107-112. [15] 魏云冰, 黄进, 牛发亮, 等. 基于小波脊线的笼型异步电动机转子故障特征提取[J]. 电工技术学报, 2003, 18(4): 123-127. Wei Yunbing, Huang Jin, Niu Faliang et al. Rotor fault feature extraction of squirrel-cage induction motors based on wavelet ridge[J]. Transactions ofChina Electrical Society, 2003, 18(4): 123-127 [16] 赵妍, 李志民, 李天云. 一种基于谱峭度的异步电机故障诊断方法[J]. 电工技术学报, 2014: 29(5): 189-196. Zhao Yan, Li Zhimin, Li Tianyun. A Method for Fault Diagnosis of Induction Motors Based on Spectral Kurtosis[J]. Transactions of China Electrotechnical Society, 2014: 29(5): 189-196. [17] 孙丽玲, 许伯强, 李志远. 基于MUSIC与SAA的笼型异步电动机转子断条故障检测[J]. 电工技术学报, 2012, 27(12): 205-212. Sun Liling, XU Boqiang, Li Zhiyuan. A MUSIC-SAA- based detection method for broken rotor bar fault in induction motors[J]. Transactions of China Elec- trotechnical Society, 2012, 27(12): 205-212. [18] 方芳, 杨士元, 侯新国. 基于改进多信号分类法的异步电机转子故障特征分量的提取[J]. 中国电机工程学报, 2007, 27(30): 72-76. Fang Fang, Yang Shiyuan, Hou Xiuguo. Rotor fault feature extraction of motor faults of induction motor based on a modified music method[J]. Proceedings of the CSEE, 2007, 27(30): 72-76. [19] 王宇静, 于继来. 电力系统振荡模态的矩阵束辨识法[J]. 中国电机工程学报, 2007, 27(19): 12-17. Wang Yujing, Yu Jilai. Matrix pencil method ofoscilla- tion modes identification in power systems[J]. Procee- dings of the CSEE, 2007, 27(19): 44-49. [20] 李宽, 李兴源, 赵睿. 基于改进矩阵束的高压直流次同步振荡检测[J]. 电网技术, 2012, 36(4): 128-132. Li Kuan, Li Xingyuan, Zhao Rui. Detection of subsynchronous oscillation in HVDC transmission system based on improved matrix pencil method[J]. Power System Technology, 2012, 36(4): 128-132. [21] 胡楠, 李兴源, 李宽, 等. 基于四阶混合平均累计量的矩阵束算法在低频振荡在线辨识中的应用[J]. 中国电机工程学报, 2013, 33(7): 53-60. Hu Nan, Li Xingyuan, Li Kuan, et al. A modified matrix pencil method based on fourth-order mixed mean cumulant for low frequency oscillation mode on-line identification[J]. Proceedings of the CSEE, 2013, 33(7): 53-60. [22] 党杰, 李勇, 徐友平, 等. 基于WAMS和奇异熵矩阵束方法的电网低频振荡仿真分析[J]. 电力系统自动化, 2010, 34(15): 14-18. Dang Jie, Li Yong, Xu Youping, et al. Power grid low frequency oscillation simulation analysis based on WAMS and singular entropy matrix pencil method[J]. Automation of Electric Power Systems, 2010, 34(15): 14-18. [23] 许伯强, 孙丽玲, 李和明. 笼型异步电动机转子断条数目诊断新判据[J]. 中国电机工程学报, 2009, 9(6): 105-110. Xu Boqiang, Sun Liling, Li Heming. A novel diagnosis criterion for broken rotor bars in induction motors[J]. Proceedings of the CSEE, 2009, 9(6): 105- 110. |
|
|
|