|
|
Research on Frequency Modulation and Accommodation Capability of Interconnected System of Micro-Energy Network |
Liang Ziwen, Mu Longhua, He Chuxuan |
College of Electronics and Information Engineering Tongji University Shanghai 201804 China |
|
|
Abstract Micro-energy network is an integrated energy system that integrates various types of distributed energy systems, storage systems and loads. However, the capacity of the micro-energy network is relatively small,and multiple micro-energy networks with similar distances can be interconnected for energy sharing. Firstly, a typical structure of micro-energy network interconnection system is proposed. Secondly, according to the distributed energy system and load types included in the system, the frequency modulation and load characteristics are analyzed. A criterion for frequency stability of interconnected systems is presented along with an analysis method for the modulation capability. Then an optimal scheduling model is established based on the intermittent energy consumption rate. At last, a case study is given to compare the frequency stability and the ability to absorb intermittent energy of the system before and after interconnection, which verifies the effectiveness and feasibility of the proposed theory.
|
Received: 03 July 2020
|
|
|
|
|
[1] Rifkin J.The third industrial revolution: how lateral power is transforming energy, economy, and the world[M]. New York: Palgrave MacMillan, 2011. [2] 李姚旺, 苗世洪, 尹斌鑫, 等. 含先进绝热压缩空气储能电站的电力系统实时调度模型[J].电工技术学报, 2019, 34(2): 387-397. Li Yaowang, Miao Shihong, Yin Binxin, et al.Real-time dispatch model for power system with advanced adiabatic compressed air energy storage[J]. Transactions of China Electrotechnical Society, 2019, 34(2): 387-397. [3] 张义志, 王小君, 和敬涵, 等. 考虑供热系统建模的综合能源系统最优能流计算方法[J]. 电工技术学报, 2019, 34(3): 562-570. Zhang Yizhi, Wang Xiaojun, He Jinghan, et al.Optimal energy flow calculation method of integrated energy system considering thermal system modeling[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 562-570. [4] 林凯骏, 吴俊勇, 郝亮亮, 等. 基于非合作博弈的冷热电联供微能源网运行策略优化[J]. 电力系统自动化, 2018, 42(6): 25-32. Lin Kaijun, Wu Junyong, Hao Liangliang, et al.Optimization of operation strategy for micro-energy grid with CCHP systems based on non-cooperative game[J]. Automation of Electric Power Systems, 2018, 42(6): 25-32. [5] 陈丽萍, 林晓明, 许苑, 等. 基于能源集线器的微能源网建模与多目标优化调度[J]. 电力系统保护与控制, 2019, 47(6): 9-16. Chen Liping, Lin Xiaoming, Xu Yuan, et al.Modeling and multi-objective optimal dispatch of micro energy grid based on energy hub[J]. Power System Protection and Control, 2019, 47(6): 9-16. [6] 刘洪, 王亦然, 李积逊, 等. 考虑建筑热平衡与柔性舒适度的乡村微能源网电热联合调度[J]. 电力系统自动化, 2019, 43(9): 50-58. Liu Hong, Wang Yiran, Li Jixun, et al.Coordinated heat and power dispatch of micro energy network of countryside considering heat balance model of building and flexible indoor comfort constraint[J]. Automation of Electric Power Systems, 2019, 43(9): 50-58. [7] 刘方泽, 牟龙华, 张涛, 等. 微能源网多能源耦合枢纽的模型搭建与优化[J]. 电力系统自动化, 2018, 42(14): 91-98. Liu Fangze, Mu Longhua, Zhang Tao, et al.Modelling and optimization of multi-energy coupling hub for micro-energy network[J]. Automation of Electric Power Systems, 2018, 42(14): 91-98. [8] 马腾飞, 吴俊勇, 郝亮亮, 等. 基于能源集线器的微能源网能量流建模及优化运行分析[J]. 电网技术, 2018, 42(1): 179-186. Ma Tengfei, Wu Junyong, Hao Liangliang, et al.Energy flow modeling and optimal operation analysis of micro energy grid based on energy hub[J]. Power System Technology, 2018, 42(1): 179-186. [9] 刘方泽, 牟龙华, 何楚璇. 微能源网信息物理系统模型及其协调控制[J]. 电力系统保护与控制, 2018, 46(17): 16-23. Liu Fangze, Mu Longhua, He Chuxuan.Modeling and control of cyber physical system for micro-energy network[J]. Power System Protection and Control, 2018, 46(17): 16-23. [10] Le Jian, Wang Cao, Zhou Wu, et al.A novel PLC channel modeling method and channel characteristic analysis of a smart distribution grid[J]. Protection and Control of Modern Power Systems, 2017, 2(2): 146-158. [11] 肖湘宁, 王鹏, 陈萌. 基于分布式多代理系统的孤岛微电网二次电压控制策略[J]. 电工技术学报, 2018, 33(8): 1894-1902. Xiao Xiangning, Wang Peng, Chen Meng.Secondary voltage control in an islanded microgrid based on distributed multi-agent system[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1894-1902. [12] 涂春鸣, 黄红, 兰征, 等. 微电网中电力电子变压器与储能的协调控制策略[J]. 电工技术学报, 2019, 34(12): 2627-2636. Tu Chunming, Huang Hong, Lan Zheng, et al.Coordinated control strategy of power electronic transformer and energy storage in microgrid[J]. Transactions of China Electrotechnical Society, 2019, 34(12): 2627-2636. [13] 崔嘉, 杨俊友, 葛维春, 等. 互联微电网孤岛运行频率稳定性协调控制策略[J]. 电网技术, 2019, 43(8): 2901-2909. Cui Jia, Yang Junyou, Ge Weichun, et al.Coordinated control strategy for interconnected microgrids in islanded mode considering frequency stability[J]. Power System Technology, 2019, 43(8): 2901-2909. [14] Bui V H, Hussain A, Kim H M.A multiagent-based hierarchical energy management strategy for multi-microgrids considering adjustable power and demand response[J]. IEEE Transactions on Smart Grid, 2018, 9(2): 1323-1333. [15] Ferraro P, Crisostomi E, Shorten R, et al.Stochastic frequency control of grid-connected microgrids[J]. IEEE Transactions on Power Systems, 2018, 33(5): 5704-5713. [16] 王旭东, 丁一, 马世乾, 等. 园区综合能源系统互联安全性与运营模式研究[J]. 电力自动化设备, 2019, 39(8): 286-293. Wang Xudong, Ding Yi, Ma Shiqian, et al.Research on interconnection security and operation mode of park level integrated energy system[J]. Electric Power Automation Equipment, 2019, 39(8): 286-293. [17] Yang Lijun, Zhang Xing, Gao Peng.Research on heat and electricity coordinated dispatch model for better integration of wind power based on electric boiler with thermal storage[J]. IET Generation, Transmission & Distribution, 2018, 12(15): 3736-3743. [18] 周长城, 马溪原, 郭祚刚, 等. 面向工程应用的用户级综合能源系统规划[J]. 电工技术学报, 2020, 35(13): 2843-2854. Zhou Changcheng, Ma Xiyuan, Guo Zuogang, et al.User-level integrated energy system planning for engineering applications[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2843-2854. [19] Wang Yongli, Li Ruiwen, Dong Huanran, et al.Capacity planning and optimization of business park-level integrated energy system based on investment constraints[J]. Energy, 2019, 189: 116345. |
|
|
|