|
|
Coordinated Control Strategy of Inertia Support and Primary Frequency Regulation of PMSG |
Yan Xiangwu1, Wang Desheng1, Yang Linlin2, Jia Jiaoxin1, Li Tiecheng3 |
1. Hebei Provincial Key Laboratory of Distributed Energy Storage and Microgrid North China Electric Power University Baoding 071003 China; 2. Yuncheng Company State Grid Shanxi Electric Power Co. Ltd Yuncheng 044000 China; 3. State Grid Hebei Electric Power Research Institute Shijiazhuang 050021 China |
|
|
Abstract On the basis of the traditional MPPT control, adding inertia support and primary frequency regulation can make grid-connected wind turbines show friendliness characteristics. It is very important to design the energy supply mode of regulation function reasonably, and the coordination control between different functions is the technical difficulty. The paper focuses on single grid-connected direct-driven wind turbine, proposing a coordinated control strategy of inertia support and primary frequency regulation over full-range of wind speed. By regulating the reference active power of the controller,the proposed strategy adopts the rotor kinetic energy to realize inertial support, and uses the additional energy storage device combining with variable power tracking control to provide the energy of primary frequency regulation. This proposed strategy not only can reduce the need of energy storage configuration, but also solves the problem of frequency secondary drop. Besides, it avoids the problems of energy loss and insufficient regulating margin which are caused by conventional spare capacity for load reduction. Finally, the feasibility and effectiveness of the theory are verified by simulation.
|
Received: 20 June 2020
|
|
|
|
|
[1] 吕志鹏, 盛万兴, 钟庆昌, 等. 虚拟同步发电机及其在微电网中的应用[J]. 中国电机工程学报, 2014, 34(16): 2591-2603. Lü Zhipeng, Sheng Wanxing, Zhong Qingchang, et al.Virtual synchronous generator and its applications in micro-grid[J]. Proceedings of the CSEE, 2014, 34(16): 2591-2603. [2] 赵晶晶, 李敏, 何欣芹, 等. 基于限转矩控制的风储联合调频控制策略[J]. 电工技术学报, 2019, 34(23): 4982-4990. Zhao Jingjing, Li Min, He Xinqin, et al.Coordinated control strategy of wind power and energy storage in frequency regulation based on torque limit control[J]. Transactions of China Electrotechnical Society, 2019, 34(23): 4982-4990. [3] 朱晓荣, 李铮, 孟凡奇. 基于不同网架结构的直流微电网稳定性分析[J]. 电工技术学报, 2021, 36(1): 166-178. Zhu Xiaorong, Li Zheng, Meng Fanqi.Stability analysis of DC microgrid based on different grid structures[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 166-178. [4] 杨俊友, 王海鑫, 白殿春, 等. 基于变流器联合控制的永磁风电机组孤网调频方法[J]. 中国电机工程学报, 2017, 37(10): 2887-2895. Yang Junyou, Wang Haixin, Bai Dianchun, et al.A frequency modulation method of wind turbines with permanent magnet synchronous generators based on combination control of converters for isolated grids[J]. Proceedings of the CSEE, 2017, 37(10): 2887-2895. [5] 张帅, 杨晶显, 刘继春, 等. 基于多尺度时序建模与估计的电力负荷数据恢复[J]. 电工技术学报, 2020, 35(13): 2736-2746. Zhang Shuai, Yang Jingxian, Liu Jichun, et al.Power load recovery based on multi-scale time-series modeling and estimation[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2736-2746. [6] 邵昊舒, 蔡旭. 大型风电机组惯量控制研究现状与展望[J]. 上海交通大学学报, 2018, 52(10): 40-51. Shao Haoshu, Cai Xu .Research status and prospect of inertia control for large scale wind turbines[J]. Journal of Shanghai Jiao Tong University, 2018, 52(10): 40-51. [7] 涂春鸣, 黄红, 兰征, 等. 微电网中电力电子变压器与储能的协调控制策略[J]. 电工技术学报, 2019, 34(12): 2627-2636. Tu Chunming, Huang Hong, Lan Zheng, et al.Coordinated control strategy of power electronic transformer and energy storage in microgrid[J]. Transactions of China Electrotechnical Society, 2019, 34(12): 2627-2636. [8] 张建良, 齐冬莲, 吴越, 等. 双馈感应风机虚拟惯量控制器的设计及仿真实验研究[J]. 实验技术与管理, 2017(5): 125-128, 136. Zhang Jianliang, Qi Donglian, Wu Yue, et al.Research on design and simulation experiment of virtual inertia controller for doubly fed induction generator[J]. Experimental Technology and Management, 2017(5): 125-128, 136. [9] Morren J, Haan S W H, Kling W L, et al. Wind turbines emulating inertia and supporting primary frequency control[J]. IEEE Transactions on Power System, 2006, 21(1): 433-434. [10] 汤奕, 戴剑丰, 冯祎鑫, 等. 基于虚拟惯量的风电场黑启动频率协同控制策略[J]. 电力系统自动化, 2017, 41(3): 19-24. Tang Yi, Dai Jianfeng, Feng Yixin, et al.Cooperative frequency control strategy for wind farm black-start based on virtual inertia[J]. Automation of Electric Power Systems, 2017, 41(3): 19-24. [11] 颜湘武, 王德胜. 基于三阶模型的虚拟同步机功频控制方案[J]. 电力电子技术, 2018, 52(10): 14-16, 28. Yan Xiangwu, Wang Desheng .Power frequency control scheme of virtual synchronous generator based on three-order model[J]. Power Electronics, 2018, 52(10): 14-16, 28. [12] 程雪坤, 孙旭东, 柴建云, 等. 电网对称故障下双馈风力发电机的虚拟同步控制策略[J]. 电力系统自动化, 2017, 41(20): 53-60, 131. Cheng Xuekun, Sun Xudong, Chai Jianyun, et al.Virtual synchronous control strategy for doubly-fed induction generator wind turbines under symmetrical grid faults[J]. Automation of electric power systems, 2017, 41(20): 53-60, 131. [13] 张琛, 蔡旭, 李征. 具有自主电网同步与弱网稳定运行能力的双馈风电机组控制方法[J]. 中国电机工程学报, 2017, 37(2): 476-485. Zhang Chen, Cai Xu, Li Zheng.Control of DFIG-based wind turbines with the capability of automatic grid-synchronization and stable operation under weak grid condition[J]. Proceedings of the CSEE, 2017, 37(2):476-485. [14] Huang Linbin, Xin Huanhai, Wang Zhen, et al.A virtual synchronous control for voltage source converters utilizing dynamics of DC-link capacitor to realize self-synchronization[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5(4): 1565-1577. [15] 贺家发, 宋美艳, 兰洲, 等. 适应于弱电网的永磁直驱风电机组虚拟惯量协调控制策略[J]. 电力系统自动化, 2018, 42(9): 83-90. He Jiafa, Song Meiyan, Lan Zhou, et al.A virtual inertia coordinated control scheme of PMSG-based wind turbines in weak grids[J]. Automation of Electric Power Systems, 2018, 42(9): 83-90. [16] 钟庆昌. 虚拟同步机与自主电力系统[J]. 中国电机工程学报, 2017, 37(2): 336-348. Zhong Qingchang.Virtual synchronous machines and autonomous power systems[J]. Proceedings of the CSEE, 2017, 37(2): 336-348. [17] 荣飞, 李培瑶, 周诗嘉. 双馈风电场损耗最小化的有功无功协调优化控制[J]. 电工技术学报, 2020, 35(3): 520-529. Rong Fei, Li Peiyao, Zhou Shijia.Coordinated optimal control with loss minimization for active and reactive power of doubly fed induction generator-based wind farm[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 520-529. [18] Xiao Zhaoxia, Huang Yu, Guerrero J M, et al.Frequency participation by using virtual inertia in wind turbines including energy storage[C]// IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 2017, DOI: 10.1109/IECON.2017.8216419. [19] 董贺贺, 张延迟, 杨宏坤, 等. 基于双馈感应风机的虚拟惯量控制研究[J]. 可再生能源, 2016(8): 1174-1179. Dong Hehe, Zhang Yanchi, Yang Hongkun, et al.Research on virtual inertia control based on doubly fed induction generator[J]. Renewable Energy Resources, 2016(8): 1174-1179. [20] 刘辉, 葛俊, 巩宇, 等. 风电场参与电网一次调频最优方案选择与风储协调控制策略研究[J]. 全球能源互联网, 2019, 2(1): 44-52. Lui Hui, Ge Jun, Gong Yu, et al.Optimization scheme selection of wind farm participation in grid primary frequency modulation and study of wind-storage coordination control strategy[J]. Journal of Global Energy Interconnection, 2019, 2(1): 44-52. [21] 赵晶晶, 吕雪, 符杨, 等. 基于可变系数的双馈风机虚拟惯量与超速控制协调的风光柴微电网频率调节技术[J]. 电工技术学报, 2015, 30(5): 59-68. Zhao Jingjing, Lü Xue, Fu Yang, et al.Frequency regulation of the wind/photovoltaic/diesel microgrid based on DFIG cooperative strategy with variable coefficients between virtual inertia and over-speed control[J]. Transactions of China Electrotechnical Society, 2015, 30(5): 59-68. [22] 全锐, 潘文霞, 刘明洋. 基于低阶频率响应模型的双馈风电机组下垂系数修正方法[J]. 电力系统自动化, 2018, 42(1): 68-73, 90. Quan Rui, Pan Wenxia, Liu Mingyang.Droop Coefficient modification method for DFIG based on low-order system frequency response model[J]. Automation of Electric Power Systems, 2018, 42(1): 68-73, 90. [23] 熊连松, 修连成, 王慧敏, 等. 储能系统抑制电网功率振荡的机理研究[J]. 电工技术学报, 2019, 34(20): 4373-4380. Xiong Liansong, Xiu Liancheng, Wang Huimin, et al.Mechanism of energy storage system to suppress grid power oscillations[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4373-4380. [24] 周天沛, 孙伟. 高渗透率下变速风力机组虚拟惯性控制的研究[J]. 中国电机工程学报, 2017, 37(2): 486-495. Zhou Tianpei, Sun Wei .Study on virtual inertia control for DFIG-based wind farms with high penetration[J]. Proceedings of the CSEE, 2017, 37(2): 486-495. [25] Zhu Jiebei, Hu Jiabing, Hunu W, et al.Synthetic inertia control strategy for doubly-fed induction generator wind turbine generators using lithium-ion super-capacitors[J]. IEEE Transactions on Energy Conversion, 2018, 33(2): 773-783. [26] 秦晓辉, 苏丽宁, 迟永宁, 等. 大电网中虚拟同步发电机惯量支撑与一次调频功能定位辨析[J]. 电力系统自动化, 2018, 42(9): 36-43. Qin Xiaohui, Su Lining, Chi Yongning, et al.Functional orientation discrimination of inertia support and primary frequency regulation of virtual synchronous generator in large power grid[J]. Automation of Electric Power Systems, 2018, 42(9): 36-43. |
|
|
|