| [1] Akyol H B, Preist C, Schien D.Avoiding overconfidence in predictions of residential energy demand through identification of the persistence forecast effect[J]. IEEE Transactions on Smart Grid, 2022, 14(1): 228-238.
[2] Kim N, Park H, Lee J, et al.Short-term electrical load forecasting with multidimensional feature extraction[J]. IEEE Transactions on Smart Grid, 2022, 13(4): 2999-3013.
[3] 李云松, 张智晟. 考虑综合需求响应的Transformer-图神经网络综合能源系统多元负荷短期预测[J]. 电工技术学报, 2024, 39(19): 6119-6128.
Li Yunsong, Zhang Zhisheng.Transformer based multi load short-term forecasting of integrated energy system considering integrated demand response[J]. Transactions of China Electrotechnical Society, 2024, 39(19): 6119-6128.
[4] de Vilmarest J, Browell J, Fasiolo M, et al. Adaptive probabilistic forecasting of electricity (net-)load[J]. IEEE Transactions on Power Systems, 2023, 39(2): 4154-4163.
[5] 李延珍, 王海鑫, 杨子豪, 等. 基于非侵入式负荷分解的家庭负荷两阶段超短期负荷预测模型[J]. 电工技术学报, 2024, 39(11): 3379-3391.
Li Yanzhen, Wang Haixin, Yang Zihao, et al.Two-stage ultra-short-term load forecasting model of household appliances based on non-intrusive load disaggregation[J]. Transactions of China Electrotechnical Society, 2024, 39(11): 3379-3391.
[6] 赵洪山, 吴雨晨, 温开云, 等. 基于时空注意力机制的台区多用户短期负荷预测[J]. 电工技术学报, 2024, 39(07): 2104-2115.
Zhao Hongshan, Wu Yuchen, Wen Kaiyun, et al.Short-term load forecasting for multiple customers in a station area based on spatial-temporal attention mechanism[J]. Transactions of China Electrotechnical Society, 2024, 39(7): 2104-2115.
[7] 钟吴君, 李培强, 涂春鸣. 基于EEMD-CBAM-BiLSTM的牵引负荷超短期预测[J]. 电工技术学报, 2024, 39(21): 6850-6864.
Zhong Wujun, Li Peiqiang, Tu Chunming.Traction load ultra-short-term forecasting framework based on EEMD-CBAM-BiLSTM[J]. Transactions of China Electrotechnical Society, 2024, 39(21): 6850-6864.
[8] Oreshkin B N, Dudek G, Pełka P, et al.N-BEATS neural network for mid-term electricity load forecasting[J]. Applied Energy, 2021, 293(1): 116918-116930.
[9] 冯昌森, 钱燚飞, 邵亮, 等. 考虑特征缺失的个性化居民短期负荷预测[J]. 电力系统自动化, 2025, 49(16): 75-84.
Feng Changsen, Qian Yifei, Shao Liang, et al.Personalized short-term residential load forecasting considering missing feature[J]. Automation of Electric Power Systems, 2025, 49(16): 75-84.
[10] Husnoo M A, Anwar A, Hosseinzadeh N, et al.A secure federated learning framework for residential short term load forecasting[J]. IEEE Transactions on Smart Grid, 2023, 15(2): 2044-2055.
[11] Zhang Yigong, Cui Qiushi, Shi Lixian, et al.PPenergyNET: Privacy-preserving Multi-energy Load Forecasting in Energy Internet Considering Energy Coupling[J]. IEEE Transactions on Power Systems, 2024, 39(5): 6235-6248.
[12] Wang Renjun, Qiu Haifeng, Gao Hongjun, et al.Adaptive horizontal federated learning-based demand response baseline load estimation[J]. IEEE Transactions on Smart Grid, 2023, 15(2): 1659-1669.
[13] Qin Dalin, Wang Chenxi, Wen Q, et al.Personalized federated darts for electricity load forecasting of individual buildings[J]. IEEE Transactions on Smart Grid, 2023, 14(6): 4888-4901.
[14] Si Caomingzhe, Wang Haijin, Chen Lei, et al.Robust co-modeling for privacy-preserving short-term load forecasting with incongruent load data distributions[J]. IEEE Transactions on Smart Grid, 2024, 15(3): 2985-2999.
[15] He Yu, Luo Fengji, Sun Mingyang, et al.Privacy-preserving and hierarchically federated framework for short-term residential load forecasting[J]. IEEE Transactions on Smart Grid, 2023, 14(6): 4409-4423.
[16] Dinh C T, Tran N H, Nguyen T D.Personalized federated learning with moreau envelopes[J]. Advances in neural information processing systems, 2020, 33: 21394-21405.
[17] Tchaye-Kondi J, Zhai Yanlong, Shen Jun, et al.Adaptive period control for communication efficient and fast convergent federated learning[J]. IEEE Transactions on Mobile Computing, 2024, 23(12): 12572-12586.
[18] Zhang Weishan, Zhou Tao, Lu Qinghua, et al.FedSL: A communication-efficient federated learning with split layer aggregation[J]. IEEE Internet of Things Journal, 2024, 11(9): 15587-15601.
[19] Pei Jiaming, Li Wei, Mumtaz S.From routine to reflection: pruning neural networks in communication-efficient federated learning[J]. IEEE Transactions on Artificial Intelligence, 2024: 1-10.
[20] Deng Yongheng, Lyu Feng, Xia Tengxi, et al.A communication-efficient hierarchical federated learning framework via shaping data distribution at edge[J]. IEEE/ACM Transactions on Networking, 2024, 32(3): 2600-2615.
[21] Bubeck S.Convex optimization: Algorithms and complexity[J]. Foundations and Trends® in Machine Learning, 2015, 8(3-4): 231-357.
[22] Karimireddy S P, Kale S, Mohri M, et al.Scaffold: Stochastic controlled averaging for federated learning[C]. International conference on machine learning. PMLR, 2020: 5132-5143.
[23] Fallah A, Mokhtari A, Ozdaglar A.Personalized federated learning: A meta-learning approach[J]. arXiv preprint arXiv: 2002. 07948, 2020.
[24] Yu Hao, Jin Rong, Yang Sen.On the linear speedup analysis of communication efficient momentum SGD for distributed non-convex optimization[C]. International Conference on Machine Learning. PMLR, 2019: 7184-7193.
[25] Jiang Yuang, Wang Shiqiang, Valls V, et al.Model pruning enables efficient federated learning on edge devices[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 34(12): 10374-10386.
[26] Li Guanzheng, Li Bin, Li Chao, et al.Battery state of charge probabilistic estimation using natural gradient boosting[J]. IEEE Transactions on Industrial Electronics, 2023, 71(9): 10636-10646.
[27] 全睿, 程功, 周宇龙, 等. 基于增强型鲸鱼优化算法CNN-BiGRU-AT模型的燃料电池衰退预测[J]. 电工技术学报, 2025, 40(19): 6342-6358.
Quan Rui, Cheng Gong, Zhou Yulong, et al.Enhanced whale optimization algorithm-based CNN-BiGRU-AT model for aging prediction of fuel cell[J]. Transactions of China Electrotechnical Society, 2025, 40(19): 6342-6358.
[28] Shirin Y.2011-2017-load: Electricity load datasetof areas in Alberta, Canada for 2011-2017[EB/OL]. Hugging Face, 2025-10-16 [2024-10-15]. https://huggingface.co/datasets/ShirinYamani/2011-2017-load.
[29] Bensalah M, Hair A, Rabie R, et al. High-resolution smart meter load dataset collected from multiple cities in Morocco[EB/OL]. UCI Machine Learning Repository, 2025-05-03 [2025-10-15]. https://doi.org/10.24432/C5FC8R.
[30] Muehlenpfordt J. Time series: Load, wind and solar, prices in hourly resolution[EB/OL]. Open Power System Data, 2020-10-06 [2025-10-15]. https://data.open-power-system-data.org/time_series/2020-10-06. |