|
|
|
| Fatigue Life Analysis of Main Tension Spring in Molded Case Circuit Breaker and Optimize Design |
| Li Kui1,2, Zhang Haotian1,2, Hu Bokai1,2, Niu Feng1,2, Guo Ze1,2 |
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300401 China; 2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province Hebei University of Technology Tianjin 300401 China |
|
|
|
Abstract A molded case circuit breaker is a low-voltage switchgear used in the distribution end of power systems. It has the advantages of small size, broad applicability, ease of installation and operation, and is widely used in line protection. When overload or short-circuit faults occur in the circuit, the molded-case circuit breaker can promptly interrupt the faulty line, thereby ensuring equipment and personal safety. However, the operating mechanism of molded-case circuit breakers can withstand significant alternating stress during frequent opening and closing operations, leading to cracks or even sudden fractures in the mechanism and seriously affecting the safety of the power system. Therefore, accurate prediction of the mechanical life of molded-case circuit breakers can enable timely maintenance or replacement of critical components before fracture. Optimizing the structure of key components can improve the service life and reliability of molded-case circuit breakers. This paper focuses on predicting the fatigue life and optimizing the structural design of the main tension spring of an MCCB. The location of stress concentration and the failure mechanism of the main tension spring in the circuit breaker are analyzed. A rigid-flexible coupling dynamic model is established, and the stress-strain variation and stress-strain cloud map characteristics of the main tension spring of the fragile component are analyzed during opening and closing. The position of the stress concentration in the main tension spring is identified. The influencing factors of random fatigue fracture of the main tension spring are analyzed, and the distribution characteristics of its fatigue life are examined. Based on fatigue life data from standard specimens of primary tension spring materials under different strains, the probability distribution of material fatigue performance is derived using a Bayesian method. A Monte Carlo simulation was used to calculate the fatigue life of the main tension spring, which was found to follow a lognormal distribution. The simulation results are validated through mechanical life tests on molded-case circuit breakers. The effects of wire diameter, surface processing quality, and structural shape on fatigue damage in the main tension spring are investigated. The design of the main tension spring structure is optimized to reduce fatigue damage, thereby improving its fatigue life and enhancing the mechanical life and reliability of the circuit breaker. Finally, the optimization design effect of the main tension spring structure is verified through simulation.
|
|
Received: 11 February 2025
|
|
|
|
|
|
[1] 李奎, 王鹏, 胡博凯, 等. 基于机械特性的微型断路器服役状态辨识方法[J]. 电工技术学报, 2025, 40(14): 4642-4654. Li Kui, Wang Peng, Hu Bokai, et al.Service status identification method of miniature circuit breaker based on mechanical characteristics[J]. Transactions of China Electrotechnical Society, 2025, 40(14): 4642-4654. [2] 李奎, 于明浩, 牛峰, 等. 电磁式漏电断路器保护特性分析与稳健性设计[J]. 电工技术学报, 2025, 40(22): 7375-7386. Li Kui, Yu Minghao, Niu Feng, et al.Protection characteristics analysis and robustness design of electromagnetic residual current device[J]. Transa- ctions of China Electrotechnical Society, 2025, 40(22): 7375-7386. [3] 李静, 高万瑞, 段薇, 等. 直流塑壳断路器开断时的飞弧现象以及抑制措施[J]. 电工技术学报, 2025, 40(19): 6329-6341. Li Jing, Gao Wanrui, Duan Wei, et al.Arc-over phenomenon and inhibition measures when DC MCCB is breaking[J]. Transactions of China Electro- technical Society, 2025, 40(19): 6329-6341. [4] 何志鹏, 赵虎, 李伟林. 考虑弧根转移和开断电流的微型断路器电寿命评估方法[J]. 电工技术学报, 2025, 40(22): 7363-7374. He Zhipeng, Zhao Hu, Li Weilin.Electrical life evaluation of miniature circuit breakers considering arc root transfer and breaking current[J]. Transa- ctions of China Electrotechnical Society, 2025, 40(22): 7363-7374. [5] 赵陈琛, 张国钢, 刘洁, 等. 基于物理信息和迁移网络的高压断路器弹簧操动机构机械参数辨识及故障诊断[J/OL]. 电工技术学报, 2025: 1-13. (2025- 07-14). https://link.cnki.net/doi/10.19595/j.cnki.1000-6753.tces.250521. Zhao Chenchen, Zhang Guogang, Liu Jie, et al. Mechanical parameter identification and fault diag- nosis of spring operating mechanism of high-voltage circuit breaker based on physical information and transfer network[J/OL]. Transactions of China Elec- trotechnical Society, 2025: 1-13. (2025-07-14). https://link.cnki.net/doi/10.19595/j.cnki.1000-6753.tces.250521. [6] 丁庚鑫, 朱晔, 吴建达, 等. 基于局部应力应变法的弹簧操动机构关键部件疲劳寿命分析[J]. 中国电机工程学报, 2023, 43(20): 8161-8171. Ding Gengxin, Zhu Ye, Wu Jianda, et al.Fatigue life analysis of key components of spring operating mechanism based on local stress-strain method[J]. Proceedings of the CSEE, 2023, 43(20): 8161-8171. [7] 李燕燕, 张杰, 王俊伟. 真空断路器弹簧操动机构分闸弹簧的优化设计方法[J]. 电器与能效管理技术, 2024(9): 29-33, 50. Li Yanyan, Zhang Jie, Wang Junwei.Optimal design method for opening spring of vacuum circuit breaker spring operating mechanism[J]. Electrical & Energy Management Technology, 2024(9): 29-33, 50. [8] 龚清玉, 解程, 刘中祥, 等. 特大跨桥梁正交异性钢桥面板疲劳性能研究[J]. 河北工业大学学报, 2025, 54(1): 32-41. Gong Qingyu, Xie Cheng, Liu Zhongxiang, et al.Study on the fatigue performance of orthotropic steel bridge decks in ultra-long span bridges[J]. Journal of Hebei University of Technology, 2025, 54(1): 32-41. [9] 董华军, 李东恒, 钟建英, 等. 12kV真空灭弧室触头合闸冲击下疲劳寿命研究[J]. 电工技术学报, 2022, 37(15): 3981-3988. Dong Huajun, Li Dongheng, Zhong Jianying, et al.Research on fatigue life of contact in 12kV vacuum interrupter under shocking[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3981-3988. [10] 周国伟, 董建新, 肖珊珊, 等. 合闸弹簧疲劳状态下高压断路器弹簧操作机构应力分布及动力响应研究[J]. 高压电器, 2019, 55(10): 44-51. Zhou Guowei, Dong Jianxin, Xiao Shanshan, et al.Stress distribution of spring operating mechanism of high-voltage circuit breaker in fatigue state of closing spring[J]. High Voltage Apparatus, 2019, 55(10): 44-51. [11] 田涛, 张兆君, 朱超, 等. 高压断路器储能弹簧的可靠性及寿命分析[J]. 电力工程技术, 2017, 36(5): 103-108. Tian Tao, Zhang Zhaojun, Zhu Chao, et al.Reliability and life analysis of energy-storing spring for high voltage circuit breaker[J]. Electric Power Engineering Technology, 2017, 36(5): 103-108. [12] 孙威杰, 刘帅, 黄玖龙, 等. 中/高碳孪晶诱发塑性钢的低周疲劳行为[J]. 塑性工程学报, 2025, 32(5): 219-228. Sun Weijie, Liu Shuai, Huang Jiulong, et al.Low cycle fatigue behavior of medium/high carbon twinning- induced plasticity steel[J]. Journal of Plasticity Engin- eering, 2025, 32(5): 219-228. [13] 黄伟波, 赵晓宇, 鲁文佳, 等. 激光金属沉积成形304不锈钢的疲劳断裂机理分析[J]. 焊接学报, 2023, 44(9): 67-73, 133. Huang Weibo, Zhao Xiaoyu, Lu Wenjia, et al.Fatigue fracture mechanism of 304 stainless steel manufactured by laser metal deposition[J]. Transactions of the China Welding Institution, 2023, 44(9): 67-73, 133. [14] 曾涛. 航空发动机涡轮轴随机变量分布表征及概率疲劳寿命预测[D]. 成都: 电子科技大学, 2023. Zeng Tao.Characterization of random variable distribution and probabilisitic fatigue life prediction of aero-engine turbine shaft[D]. Chengdu: University of Electronic Science and Technology of China, 2023. [15] 黄海新, 刘丙勇, 程寿山. 复杂截面桥梁寿命期可靠性设计分步优化[J]. 河北工业大学学报, 2019, 48(2): 74-80. Huang Haixin, Liu Bingyong, Cheng Shoushan.Reliability-based staged optimization study of bridge design with complex cross-section[J]. Journal of Hebei University of Technology, 2019, 48(2): 74-80. [16] Lee Yung-Li, Pan J, Richard H, 等. 疲劳试验测试分析理论与实践[M]. 张然治, 主译. 北京: 国防工业出版社, 2011. [17] 李孝品, 杨宇, 田根起, 等. 基于蒙特卡洛法的透平轮盘寿命计算及可靠性分析[J]. 动力工程学报, 2023, 43(11): 1434-1439, 1530. Li Xiaopin, Yang Yu, Tian Genqi, et al.Life calculation and reliability analysis of turbine wheel based on Monte Carlo method[J]. Journal of Chinese Society of Power Engineering, 2023, 43(11): 1434-1439, 1530. [18] 李金星, 李国嘉, 唐勃, 等. 压气机叶片-轮盘的低周疲劳寿命可靠性设计优化[J]. 中国电机工程学报, 2025, 45(7): 2670-2680. Li Jinxing, Li Guojia, Tang Bo, et al.Reliability- based design optimization of compressor blade disc low cycle fatigue life[J]. Proceedings of the CSEE, 2025, 45(7): 2670-2680. [19] 宋礼睿, 崔权维, 周建星, 等. 风电齿轮箱高速轴轴承疲劳寿命及动态可靠性分析[J]. 太阳能学报, 2023, 44(8): 437-444. Song Lirui, Cui Quanwei, Zhou Jianxing, et al.High speed bearing fatigue life and reliability analysis of wind turbine gearbox under random load[J]. Acta Energiae Solaris Sinica, 2023, 44(8): 437-444. [20] 彭茂林, 杨自春, 曹跃云, 等. 涡轮叶片低周疲劳可靠性稳健设计优化研究[J]. 中国电机工程学报, 2013, 33(11): 104-111, 17. Peng Maolin, Yang Zichun, Cao Yueyun, et al.Research on low cycle fatigue reliability-based robust design optimization of turbine blade[J]. Proceedings of the CSEE, 2013, 33(11): 104-111, 17. [21] 朱顺鹏. 高温复杂结构的混合概率故障物理建模与疲劳寿命预测[D]. 成都: 电子科技大学, 2012. Zhu Shunpeng.Physical modeling of mixed pro- bability fault and fatigue life prediction of high temperature complex structures[D]. Chengdu: University of Electronic Science and Technology of China, 2012. [22] 孟德彪. 基于可靠性的多学科设计优化及其在机构设计中的应用[D]. 成都: 电子科技大学, 2014. Meng Debiao.Reliability based multidisciplinary design optimization and its aoolication in mechanism design[D]. Chengdu: University of Electronic Science and Technology of China, 2014. [23] 马小兵, 杨军. 可靠性统计分析[M]. 北京: 北京航空航天大学出版社, 2020. [24] 王阳英夫. 高压断路器的机械可靠性分析及寿命评估[D]. 南京: 东南大学, 2017. Wang Yangyingfu.Mechnical reliability analysis and life evaluation of high voltage breaker[D]. Nanjing: Southeast University, 2017. [25] 秦大同, 谢里阳. 疲劳强度与可靠性设计[M]. 北京: 化学工业出版社, 2013. |
|
|
|