|
|
|
| Robust Optimization of Reactor Core Vibration Reduction Based on Uncertainty of Gap Structural Parameters |
| Guo Jiayi, Li Xiaopeng, Zhao Jingyun, Sun Mingzhuang, Liu Yunpeng, Lü Fangcheng, Liu Yumeng |
| Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense North China Electric Power University Baoding 071003 China |
|
|
|
Abstract Reactors are essential equipment for maintaining the safe and stable operation of AC power grids, and excessive vibration is a major challenge in reactor operation. The core is the primary source of vibration in reactors, and core vibration damping technology plays a crucial role in the stability and reliability of reactor operation. Existing methods for vibration reduction optimization of reactor core are typically based on deterministic parameters, without adequately accounting for structural parameter uncertainties introduced by factors such as manufacturing tolerances. This limitation can undermine the reliability of optimization strategies in practical applications and may fail to effectively mitigate core vibrations. To address this challenge, this study uses the maximum vibration acceleration of the core as a key performance indicator, systematically examining the effects of gap structural parameter uncertainties on the vibration characteristics of reactor core, and a robust optimization method is proposed to account for these uncertainties. Firstly, this paper qualitatively analyzed the impact of gap structural parameter uncertainties on reactor core vibrations from a theoretical perspective. Subsequently, a finite element simulation model was established based on the actual operating and design parameters of the reactor. The kernel density estimation method was used to quantitatively evaluate the probability of reliable operation, ensuring that the vibration acceleration of the reactor core does not exceed the original design value under ±1 mm uncertainty in gap structural parameters. Based on the results of the uncertainty analysis, a robust optimization model for reactor core vibration damping was developed, aiming to minimize the maximum vibration acceleration of the core. The model incorporated multiple constraints, including gap length, inductance, and magnetic flux density, to reflect actual operating conditions. By integrating the Morris one-at-a-time (MOAT) screening method and Sobol global sensitivity indices, the solution space of the optimization variables was reduced, and the model was solved using the bound optimization by quadratic approximation (BOBYQA) algorithm, resulting in a robust optimization scheme for reactor core vibration damping. The results indicate that the proposed optimization scheme significantly improves the robustness of reactor core vibration optimization under uncertain disturbances. The optimized reactor core achieves a 97.34% probability of meeting reliable operation requirements for maximum vibration acceleration, making it more suitable for practical engineering applications. This paper provides a reference for the research and design of reactor core vibration reduction optimization considering uncertainty factors. The following conclusions are drawn from simulations and experiments: (1) Gap structural parameter uncertainties have a significant impact on the maximum vibration acceleration of reactor core, substantially reducing the reliability of reactor structural designs. Under ±1 mm uncertainty in gap structural parameters, the conditional probability of meeting the safety threshold of the maximum vibration acceleration of the core under the original design value is only 67.37%. (2) This paper proposes a reactor core vibration reduction optimization design scheme that accounts for structural parameter uncertainties, significantly enhancing the robustness of the optimized design. Compared to deterministic optimization methods, the robust optimization approach increases the conditional probability of reliable reactor operation from 44.21% to 97.34%, demonstrating a remarkable improvement.
|
|
Received: 16 December 2024
|
|
|
|
|
|
[1] 贲彤, 方敏, 陈龙, 等. 非晶合金铁心电抗器减振结构的电磁-机械耦合拓扑优化[J]. 电工技术学报, 2023, 38(24): 6553-6564. Ben Tong, Fang Min, Chen Long, et al.Optimization of magnetic-mechanical coupling topology for vibration damping structures of amorphous alloy core reactor[J]. Transactions of China Electrotechnical Society, 2023, 38(24): 6553-6564. [2] 廖文龙, 杨玥坪, 魏华超, 等. 饱和电抗器用环氧树脂性能提升研究[J]. 绝缘材料, 2024, 57(5): 42-48. Liao Wenlong, Yang Yueping, Wei Huachao, et al.Study on performance enhancement of epoxy resin for saturated reactor[J]. Insulating Materials, 2024, 57(5): 42-48. [3] 闫荣格, 程云飞. 动静态力共同作用对电抗器铁心振动影响[J]. 电工技术学报, 2023, 38(4): 1104-1114. Yan Rongge, Cheng Yunfei.Influence of dynamic and static forces on vibration of reactor core[J]. Trans- actions of China Electrotechnical Society, 2023, 38(4): 1104-1114. [4] 刘云鹏, 来庭煜, 刘嘉硕, 等. 特高压直流换流阀饱和电抗器振动声纹特性与松动程度声纹检测方法[J]. 电工技术学报, 2023, 38(5): 1375-1389. Liu Yunpeng, Lai Tingyu, Liu Jiashuo, et al.Vibration voiceprint characteristics and looseness detection method of UHVDC converter valve saturable reactor[J]. Transactions of China Electrotechnical Society, 2023, 38(5): 1375-1389. [5] 杨帆, 张相杰, 王鹏博, 等. 特高压并联电抗器铁芯振动及噪声特征研究[J]. 高电压技术, 2024, 50(2): 725-736. Yang Fan, Zhang Xiangjie, Wang Pengbo, et al.Study on the vibration and noise characteristics of the iron core in ultra-high voltage shunt reactor[J]. High Voltage Engineering, 2024, 50(2): 725-736. [6] 袁发庭, 陈步康, 陈炜, 等. 基于电磁-结构力场耦合的铁芯电抗器振动特性分析及优化方法[J]. 高电压技术, 2023, 49(6): 2374-2385. Yuan Fating, Chen Bukang, Chen Wei, et al.Vibration characteristic analysis and optimization method of iron core reactor based on electromagnetic- structural force field coupling[J]. High Voltage Engineering, 2023, 49(6): 2374-2385. [7] 郭佳熠, 耿江海, 律方成, 等. 基于气隙结构的特高压并联电抗器铁芯减振技术[J]. 高电压技术, 2021, 47(11): 3892-3901. Guojia Yi, Geng Jianghai, Lü Fangcheng, et al.Vibration reduction technology of UHV shunt reactor core based on air gap structure[J]. High Voltage Engineering, 2021, 47(11): 3892-3901. [8] 王革鹏, 金文德, 曾向阳, 等. 特高压并联电抗器铁心振动的分析与控制研究[J]. 电工技术学报, 2022, 37(9): 2190-2198. Wang Gepeng, Jin Wende, Zeng Xiangyang, et al.Analysis and control research on core vibration of UHV shunt reactor[J]. Transactions of China Electro- technical Society, 2022, 37(9): 2190-2198. [9] 于全毅, 刘长英, 吴定超, 等. 基于广义混沌多项式法的多导体传输线辐射敏感度分析方法[J]. 电工技术学报, 2020, 35(17): 3591-3600. Yu Quanyi, Liu Changying, Wu Dingchao, et al.Radiation sensitivity analysis of multiconductor transmission lines based on generalized polynomial chaos method[J]. Transactions of China Electro- technical Society, 2020, 35(17): 3591-3600. [10] 王洪耀, 张英敏, 廖建权, 等. 基于阻抗灵敏度分析的柔直并网系统中高频谐振抑制策略[J]. 电网技术, 2023, 47(10): 4311-4323. Wang Hongyao, Zhang Yingmin, Liao Jianquan, et al.Medium-and high-frequency resonance suppression strategy in flexible direct grid connected system based on impedance sensitivity analysis[J]. Power System Technology, 2023, 47(10): 4311-4323. [11] 何畅, 何紫薇, 江力强, 等. 多重不确定性对特高压变压器瓷套管地震失效风险的影响[J]. 中国电机工程学报, 2022, 42(15): 5763-5775. He Chang, He Ziwei, Jiang Liqiang, et al.Effects of different sorts of uncertainties on seismic failure risk of ultra-high-voltage porcelain transformer bushing[J]. Proceedings of the CSEE, 2022, 42(15): 5763-5775. [12] 王岑峰, 王蕾, 孙飞飞, 等. 基于模糊逻辑控制的混合储能辅助风电调频的双层优化配置模型[J]. 高压电器, 2024, 60(10): 54-63. Wang Cenfeng, Wang Lei, Sun Feifei, et al.Two- layer optimal configuration model of hybrid energy storage assisted wind power frequency regulation based on fuzzy logic control[J]. High Voltage Apparatus, 2024, 60(10): 54-63. [13] 张伟骏, 李智诚, 陈大玮, 等. 配网侧分布式储能系统的随机优化配置和选址方法[J]. 高压电器, 2023, 59(7): 125-135. Zhang Weijun, Li Zhicheng, Chen Dawei, et al.Stochastic optimal configuration and site selection method of grid-side distributed energy storage system[J]. High Voltage Apparatus, 2023, 59(7): 125-135. [14] 吴孟雪, 房方. 计及风光不确定性的电-热-氢综合能源系统分布鲁棒优化[J]. 电工技术学报, 2023, 38(13): 3473-3485. Wu Mengxue, Fang Fang.Distributionally robust optimization of electricity-heat-hydrogen integrated energy system with wind and solar uncertainties[J]. Transactions of China Electrotechnical Society, 2023, 38(13): 3473-3485. [15] 刘一欣, 郭力, 王成山. 微电网两阶段鲁棒优化经济调度方法[J]. 中国电机工程学报, 2018, 38(14): 4013-4022, 4307. Liu Yixin, Guo Li, Wang Chengshan.Economic dispatch of microgrid based on two stage robust optimization[J]. Proceedings of the CSEE, 2018, 38(14): 4013-4022, 4307. [16] 龚夕霞, 李焱鑫, 卢琴芬. 模块化永磁直线同步电机考虑制造公差的推力鲁棒性优化[J]. 电工技术学报, 2024, 39(2): 465-474, 513. Gong Xixia, Li Yanxin, Lu Qinfen.Thrust robustness optimization of modular permanent magnet linear synchronous motor accounting for manufacture tolerance[J]. Transactions of China Electrotechnical Society, 2024, 39(2): 465-474, 513. [17] 张鹏宁, 李琳, 程志光, 等. 并联电抗器与变压器模型铁心振动仿真与试验对比[J]. 电工技术学报, 2018, 33(22): 5273-5281. Zhang Pengning, Li Lin, Cheng Zhiguang, et al.Vibration simulation and experiment comparison of shunt reactor and transformer model core[J]. Trans- actions of China Electrotechnical Society, 2018, 33(22): 5273-5281. [18] Xu Yijun, Netto M, Mili L.Propagating parameter uncertainty in power system nonlinear dynamic simulations using a Koopman operator-based surrogate model[J]. IEEE Transactions on Power Systems, 37(4): 3157-3160. [19] 闫荣格, 赵路娜, 贲彤, 等. 70基于负超磁致伸缩效应电抗器减振新方法的研究[J]. 振动与冲击, 2018, 37(19): 254-258. Yan Rongge, Zhao Luna, Ben Tong, et al.A new vibration reduction method for reactors using NGMM[J]. Journal of Vibration and Shock, 2018, 37(19): 254-258. [20] Hu Bo, Li Yudun, Yang Hejun, et al.Wind speed model based on kernel density estimation and its application in reliability assessment of generating systems[J]. Journal of Modern Power Systems and Clean Energy, 2017, 5(2): 220-227. [21] 杨汾艳, 李海波, 盛超, 等. 多端口级联式电力电子变压器可靠性评估模型及其应用[J]. 电力系统保护与控制, 2019, 47(20): 41-49. Yang Fenyan, Li Haibo, Sheng Chao, et al.Reliability evaluation model of cascaded multiport power electronic transformer and its application[J]. Power System Protection and Control, 2019, 47(20): 41-49. [22] 张献, 丁可浩, 赵黎媛, 等. 计及电动汽车混合充电系统接入的综合能源系统鲁棒优化调度[J]. 电工技术学报, 2025, 40(14): 4446-4459. Zhang Xian, Ding Kehao, Zhao Liyuan, et al.Robust optimal scheduling of integrated energy system considering electric vehicle hybrid charging system[J]. Transactions of China Electrotechnical Society, 2025, 40(14): 4446-4459. [23] 袁发庭, 吕凯, 刘健犇, 等. 基于电磁-热-结构多物理场耦合的铁心电抗器线圈结构优化方法[J]. 电工技术学报, 2022, 37(24): 6431-6441. Yuan Fating, Lü Kai, Liu Jianben, et al.Coil structures optimization method of iron core reactor based on electromagnetic-thermal-structure multi- physical field coupling[J]. Transactions of China Electrotechnical Society, 2022, 37(24): 6431-6441. [24] 袁发庭, 曾继皓, 姜岚, 等. 基于多物理场仿真和VIKOR决策的干式铁心电抗器多目标优化[J]. 工程科学与技术, 2023, 55(4): 67-78. Yuan Fating, Zeng Jihao, Jiang Lan, et al.Multi- objective optimization of the dry core reactor based on multi-physical field simulation and VIKOR decision[J]. Advanced Engineering Sciences, 2023, 55(4): 67-78. [25] 王长江, 姜涛, 刘福锁, 等. 基于轨迹灵敏度的暂态过电压两阶段优化控制[J]. 电工技术学报, 2021, 36(9): 1888-1900, 1913. Wang Changjiang, Jiang Tao, Liu Fusuo, et al.Two- stage optimization control of transient overvoltage based on trajectory sensitivity[J]. Transactions of China Elec- trotechnical Society, 2021, 36(9): 1888-1900, 1913. [26] Morris M D.Factorial sampling plans for preliminary computational experiments[J]. Technometrics, 1991, 33(2): 161-174. [27] 陈季凌, 唐进元, 杨铎. 齿面粗糙度参数与接触应力的敏感性分析研究[J]. 西北工业大学学报, 2022, 40(4): 883-891. Chen Jiling, Tang Jinyuan, Yang Duo.Study on sensitivity analysis of tooth surface roughness parameters and contact stress[J]. Journal of Northwes- tern Polytechnical University, 2022, 40(4): 883-891. [28] 刘建锋, 陈乐乐, 姚晨曦. 基于SRSM模型的变压器电气参数对绕组变形的敏感性分析[J]. 电力科学与技术学报, 2023, 38(4): 93-103. Liu Jianfeng, Chen Lele, Yao Chenxi.Sensitivity analysis of transformer electrical parameters to winding deformation based on SRSM method[J]. Journal of Electric Power Science and Technology, 2023, 38(4): 93-103. [29] Sobol’ I M.Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation, 2001, 55(1/2/3): 271-280. [30] Blatman G, Sudret B.An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis[J]. Probabilistic Engineering Mechanics, 2010, 25(2): 183-197. [31] 李妍, 周洪伟, 沈小伟, 等. 电力变压器绕组电气参数对绕组变形的全局灵敏度分析[J]. 电力系统保护与控制, 2018, 46(7): 31-37. Li Yan, Zhou Hongwei, Shen Xiaowei, et al.Global sensitivity analysis of winding electrical parameters on power transformer winding deformation[J]. Power System Protection and Control, 2018, 46(7): 31-37. [32] 刁凯凯, 孙晓东, 杨泽斌. 开关磁阻电机系统级确定性与鲁棒性优化设计方法的对比分析[J]. 中国电机工程学报, 2023, 43(9): 3575-3586. Diao Kaikai, Sun Xiaodong, Yang Zebin.Compara- tive analysis of system-level deterministic and robust optimization design methods for switched reluctance motors[J]. Proceedings of the CSEE, 2023, 43(9): 3575-3586. |
|
|
|