[1] 徐菘, 杨博, 刘浩, 等. 一种提高虚拟同步机电流质量的电压-电流级联闭环控制方案[J]. 电工技术学报, 2024, 39(6): 1871-1885.
Xu Song, Yang Bo, Liu Hao, et al.A cascaded harmonic voltage and current closed-loop control method to improve the current quality of virtual synchronous generators[J]. Transactions of China Electrotechnical Society, 2024, 39(6): 1871-1885.
[2]Zhong Qingchang, Weiss G. Synchronverters: inverters that mimic synchronous generators[J]. IEEE Transactions on Industrial Electronics, 2011, 58(4): 1259-1267.
[3] 刘欣, 郭志博, 贾焦心, 等. 基于序阻抗的虚拟同步发电机并网稳定性分析及虚拟阻抗设计[J]. 电工技术学报, 2023, 38(15): 4130-4146. Liu Xin, Guo Zhibo, Jia Jiaoxin, et al. Stability analysis and virtual impedance design of virtual synchronous machine based on sequence impedance[J]. Transactions of China Electrotechnical Society, 2023, 38(15): 4130-4146.
[4]Wang Weikang, Yao Wenxuan, Chen Chang, et al. Fast and accurate frequency response estimation for large power system disturbances using second derivative of frequency data[J]. IEEE Transactions on Power Systems, 2020, 35(3): 2483-2486.
[5] 杨德健, 王鑫, 严干贵, 等. 计及调频死区的柔性风储联合频率控制策略[J]. 电工技术学报, 2023, 38(17): 4646-4656. Yang Dejian, Wang Xin, Yan Gangui, et al. Flexible frequency regulation scheme of DFIG embed battery energy storage system considering deadbands[J]. Transactions of China Electrotechnical Society, 2023, 38(17): 4646-4656.
[6]Fang Hongwei, Yu Zhiwei. Control of virtual synchronous generator for frequency regulation using a coordinated self-adaptive method[J]. CSEE Journal of Power and Energy Systems, 2024, 10(1): 175-184.
[7] 吕志鹏, 盛万兴, 刘海涛, 等. 虚拟同步机技术在电力系统中的应用与挑战[J]. 中国电机工程学报, 2017, 37(2): 349-360. Lü Zhipeng, Sheng Wanxing, Liu Haitao, et al. Application and challenge of virtual synchronous machine technology in power system[J]. Proceedings of the CSEE, 2017, 37(2): 349-360.
[8] 纪君奇, 杨黎晖, 马西奎. 基于虚拟同步发电机控制的并网逆变器切换型振荡及其非光滑分岔特性[J]. 电工技术学报, 2024, 39(24): 7860-7873. Ji Junqi, Yang Lihui, Ma Xikui. Switched oscillation and its non-smooth bifurcation characteristics in grid-connected inverter based on virtual synchronous generator control[J]. Transactions of China Electrotechnical Society, 2024, 39(24): 7860-7873.
[9]Alipoor J, Miura Y, Ise T. Power system stabilization using virtual synchronous generator with alternating moment of inertia[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3(2): 451-458.
[10]Wang Fei, Zhang Lijun, Feng Xiayun, et al. An adaptive control strategy for virtual synchronous generator[J]. IEEE Transactions on Industry Applications, 2018, 54(5): 5124-5133.
[11]Yao Fengjun, Zhao Jinbin, Li Xiangjun, et al. RBF neural network based virtual synchronous generator control with improved frequency stability[J]. IEEE Transactions on Industrial Informatics, 2021, 17(6): 4014-4024.
[12]Li Dongdong, Zhu Qianwei, Lin Shunfu, et al. A self-adaptive inertia and damping combination control of VSG to support frequency stability[J]. IEEE Transactions on Energy Conversion, 2017, 32(1): 397-398.
[13]Shi Rongliang, Zhang Xing, Hu Chao, et al. Self-tuning virtual synchronous generator control for improving frequency stability in autonomous photovoltaic-diesel microgrids[J]. Journal of Modern Power Systems and Clean Energy, 2018, 6(3): 482-494.
[14] 宋琼, 张辉, 孙凯, 等. 多微源独立微网中虚拟同步发电机的改进型转动惯量自适应控制[J]. 中国电机工程学报, 2017, 37(2): 412-424. Song Qiong, Zhang Hui, Sun Kai, et al. Improved adaptive control of inertia for virtual synchronous generators in islanding micro-grid with multiple distributed generation units[J]. Proceedings of the CSEE, 2017, 37(2): 412-424.
[15]Li Meiyi, Huang Wentao, Tai Nengling, et al. A dual-adaptivity inertia control strategy for virtual synchronous generator[J]. IEEE Transactions on Power Systems, 2020, 35(1): 594-604.
[16]Vazquez S, Rodriguez J, Rivera M, et al. Model predictive control for power converters and drives: advances and trends[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2): 935-947.
[17] 陈来军, 王任, 郑天文, 等. 改善独立微网频率动态特性的虚拟同步发电机模型预测控制[J]. 电力系统自动化, 2018, 42(3): 40-47. Chen Laijun, Wang Ren, Zheng Tianwen, et al. Model predictive control of virtual synchronous generator to improve dynamic characteristic of frequency for isolated microgrid[J]. Automation of Electric Power Systems, 2018, 42(3): 40-47.
[18]Wang Rutian, Wang Mingfeng, Wang Kua, et al. Optimization of frequency dynamic characteristics in microgrids: an improved MPC-VSG control[J]. International Journal of Electrical Power & Energy Systems, 2024, 156: 109783.
[19] 赵书强, 王慧, 田娜, 等. 基于模型预测控制的直流微电网虚拟惯性优化方法[J]. 电工技术学报, 2023, 38(12): 3264-3276. Zhao Shuqiang, Wang Hui, Tian Na, et al. Model predictive control based DC microgrid virtual inertia optimal method[J]. Transactions of China Electrotechnical Society, 2023, 38(12): 3264-3276.
[20]Zheng X, Antoine M, Li H Y. Multi-VSG inverter oower sharing MPC-VSG Control for islanded microgrid[J]. IET Conference Proceedings, 2021, 2021(5): 589-594.
[21] 李帅虎, 向丽珍, 向振宇, 等. 用于改善VSG频率响应的模型预测控制方法[J]. 高电压技术, 2021, 47(8): 2856-2864. Li Shuaihu, Xiang Lizhen, Xiang Zhenyu, et al. MPC control method for improving VSG frequency response[J]. High Voltage Engineering, 2021, 47(8): 2856-2864.
[22] 倪泽龙, 林钰钧, 王治涛, 等. 基于模型预测的虚拟同步机控制储能调频研究[J]. 电力系统保护与控制, 2022, 50(14): 85-93. Ni Zelong, Lin Yujun, Wang Zhitao, et al. Research on frequency regulation of VSG controlled energy storages based on model predictive control[J]. Power System Protection and Control, 2022, 50(14): 85-93.
[23]Long Bo, Liao Yong, Chong K T, et al. MPC-controlled virtual synchronous generator to enhance frequency and voltage dynamic performance in islanded microgrids[J]. IEEE Transactions on Smart Grid, 2021, 12(2): 953-964.
[24] 郑云聪, 赵晋斌, 潘超, 等. 固体氧化物燃料电池的模型预测VSG调频控制策略[J]. 高电压技术, 2024, 50(8): 3715-3724. Zheng Yuncong, Zhao Jinbin, Pan Chao, et al. Model predictive VSG frequency modulation control strategy of solid oxide fuel cells[J]. High Voltage Engineering, 2024, 50(8): 3715-3724.
[25]Long Bo, Liao Yong, Chong K T, et al. Enhancement of frequency regulation in AC microgrid: a fuzzy-MPC controlled virtual synchronous generator[J]. IEEE Transactions on Smart Grid, 2021, 12(4): 3138-3149.
[26] 吴限, 李卫东, 李正文, 等. 大扰动下考虑电化学储能的主动频率响应优化控制策略[J]. 电力系统自动化, 2023, 47(17): 118-127. Wu Xian, Li Weidong, Li Zhengwen, et al. Optimal control strategy of active frequency response against large disturbance considering electrochemical energy storage[J]. Automation of Electric Power Systems, 2023, 47(17): 118-127.
[27] 周涛, 向永建, 杜可可, 等. 风机与储能参与电网调频协调控制技术综述[J]. 浙江电力, 2024, 43(7): 45-55. Zhou Tao, Xiang Yongjian, Du Keke, et al. An overview of a coordinated control technique for wind turbines and energy storage participating grid frequency regulation[J]. Zhejiang Electric Power, 2024, 43(7): 45-55. |