[1] 李军徽, 潘雅慧, 穆钢, 等. 高比例风电系统中储能集群辅助火电机组调峰分层优化控制策略[J/OL]. 电工技术学报, 2024: 1-18[2024-09-23]. https://doi.org/10.19595/j.cnki.1000-6753.tces.240545.
Li Junhui, Pan Yahui, Mu Gang, et al.Hierarchical optimal control strategy for storage cluster-assisted thermal unit peaking in high-ratio wind power system [J/OL]. 2024: 1-18[2024-09-23]. https://doi.org/10.19595/j.cnki.1000-6753.tces.240545.
[2] Debbarma S, Saikia L C, Sinha N. Automatic generation control using two degree of freedom fractional order PID controller[J]. International Journal of Electrical Power & Energy Systems, 2014, 58: 120-129.
[3] Sahu R K, Panda S, Yegireddy N K. A novel hybrid DEPS optimized fuzzy PI/PID controller for load frequency control of multi-area interconnected power systems[J]. Journal of Process Control, 2014, 24(10): 1596-1608.
[4] Sahu B K, Pati S, Mohanty P K, et al. Teaching-learning based optimization algorithm based fuzzy-PID controller for automatic generation control of multi-area power system[J]. Applied Soft Computing, 2015, 27: 240-249.
[5] Liu Fang, Li Yong, Cao Yijia, et al. A two-layer active disturbance rejection controller design for load frequency control of interconnected power system[J]. IEEE Transactions on Power Systems, 2016, 31(4): 3320-3321.
[6] 王磊, 胡国, 吴海, 等. 基于分层深度强化学习的分布式能源系统多能协同优化方法[J]. 电力系统自动化, 2024, 48(1): 67-76. Wang Lei, Hu Guo, Wu Hai, et al. Multi-energy collaborative optimization method for distributed energy systems based on hierarchical deep reinforcement learning[J]. Automation of Electric Power Systems, 2024, 48(1): 67-76.
[7] Yin Linfei, Zhang Chenwei, Wang Yaoxiong, et al. Emotional deep learning programming controller for automatic voltage control of power systems[J]. IEEE Access, 2021, 9: 31880-31891.
[8] Zhang Xiao shun, Yu Tao, Pan Zhen ning, et al. Lifelong learning for complementary generation control of interconnected power grids with high-penetration renewables and EVs[J]. IEEE Transactions on Power Systems, 2018, 33(4): 4097-4110.
[9] 罗清局, 朱继忠. 基于多参数规划改进ADMM的线性电-气综合能源系统分布式优化调度[J]. 电工技术学报, 2024, 39(9): 2797-2809.
Luo Qingju, Zhu Jizhong.Distributed optimal dispatch of linear integrated electricity and gas system based on multi-parameter programming modified ADMM[J]. Transactions of China Electrotechnical Society, 2024, 39(9): 2797-2809.
[10] Li Jiawen, Yu Tao, Zhu Hanxin, et al. Multi-agent deep reinforcement learning for sectional AGC dispatch[J]. IEEE Access, 2020, 8: 158067-158081.
[11] 张薇, 王浚宇, 杨茂, 等. 基于分布式双层强化学习的区域综合能源系统多时间尺度优化调度[J/OL]. 电工技术学报, 2024: 1-16[2024-10-23].https://doi.org/10.19595/j.cnki.1000-6753.tces.240907.
Zhang Wei, Wang Junyu, Yang Mao, el al. The multi-time-scale optimal scheduling for regional integrated energy system based on the distributed bi-layer reinforcement learning[J]. Transactions of China Electrotechnical Society, 2024: 1-16[2024-10-23]. https://doi.org/10.19595/j.cnki.1000-6753.tces.240907.
[12] Li Jiawen, Yu Tao. Virtual generation alliance automatic generation control based on deep reinforcement learning[J]. IEEE Access, 2020, 8: 182204-182217.
[13] Yu Tao, Zhou Bin, Chan K W, et al. Stochastic optimal relaxed automatic generation control in non-Markov environment based on multi-step $Q(łambda)$ learning[J]. IEEE Transactions on Power Systems, 2011, 26(3): 1272-1282.
[14] Yu T, Zhou B, Chan K W, et al. R, 2018, 9(3): 2152-2165.
[16] Thrun S, Schwartz A.Issues in using function approximation for reinforcement learning; proceedings of the Proceedings of the 1993 connectionist models summer school, F, 2014 [C]. Psychology Press.
[18] 李彦营, 席磊, 郭宜果, 等. 基于权重双Q-时延更新学习算法的自动发电控制[J]. 中国电机工程学报, 2022, 42(15): 5459-5471.
Li Yanying, Xi Lei, Guo Yiguo, et al.Automatic generation control based on the weighted double Q-delayed update learning algorithm[J]. Proceedings of the CSEE, 2022, 42(15): 5459-5471.
[19] Xi Lei, Li Haokai, Zhu Jizhong, et al. A novel automatic generation control method based on the large-scale electric vehicles and wind power integration into the grid[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(5): 5824-5834.
[20] 席磊, 刘治洪, 李彦营. 基于拉格朗日松弛强化学习算法的自动发电控制[J]. 中国电机工程学报, 2023, 43(4): 1359-1369. Xi Lei, Liu Zhihong, Li Yanying. Automatic generation control based on Lagrangian relaxation reinforcement learning algorithm[J]. Proceedings of the CSEE, 2023, 43(4): 1359-1369.
[21] Lillicrap T, Hunt J J, Pritzel A, et al. Continuous control with deep reinforcement learning[J]. arXiv preprint arXiv:150902971, 2015.
[22] Vaswani S, Kazemi A, Babanezhad R, et al. Addressing function approximation error in actor-critic methods: supplementary material A. proof of convergence of clipped double Q-learning[C] //Proceedings of the International conference on machine learning, 2018
[23] Garibbo M, Robeyns M, Aitchison L.Taylor TD-learning[J]. Advances in Neural Information Processing Systems, 2024, 36.
[24] Sujit S, Nath S, Braga P, et al.Prioritizing samples in reinforcement learning with reducible loss[J]. Advances in Neural Information Processing Systems, 2024, 36.
[25] 甘伟, 艾小猛, 方家琨, 等. 风-火-水-储-气联合优化调度策略[J]. 电工技术学报, 2017, 32(增刊1): 11-20.
Gan Wei, Ai Xiaomeng, Fang Jiakun, et al. Coordinated optimal operation of the wind, coal, hydro, gas units with energy storage[J]. Transactions of China Electrotechnical Society, 2017, 32(S1): 11-20.
[26] Magdy G, Shabib G, Elbaset A A, et al. Renewable power systems dynamic security using a new coordination of frequency control strategy based on virtual synchronous generator and digital frequency protection[J]. International Journal of Electrical Power & Energy Systems, 2019, 109: 351-368.
[27] 赵熙临, 周红玉, 付波, 等. 一种用于微网调频的风电与抽水蓄能综合控制方法[J]. 河南理工大学学报(自然科学版), 2023, 42(4): 121-129. Zhao Xilin, Zhou Hongyu, Fu Bo, et al. A comprehensive control method for wind power and pumped storage in the frequency regulation of microgrid[J]. Journal of Henan Polytechnic University (Natural Science), 2023, 42(4): 121-129.
[28] 李嘉文, 余涛, 张孝顺, 等. 基于改进深度确定性梯度算法的AGC发电功率指令分配方法[J]. 中国电机工程学报, 2021, 41(21): 7198-7212. Li Jiawen, Yu Tao, Zhang Xiaoshun, et al. AGC power generation command allocation method based on improved deep deterministic policy gradient algorithm[J]. Proceedings of the CSEE, 2021, 41(21): 7198-7212.
[29] Jaleeli N, VanSlyck L S. NERC’s new control performance standards[J]. IEEE Transactions on Power Systems, 1999, 14(3): 1092-1099.
[30] 吴珊, 边晓燕, 张菁娴, 等. 面向新型电力系统灵活性提升的国内外辅助服务市场研究综述[J]. 电工技术学报, 2023, 38(6): 1662-1677. Wu Shan, Bian Xiaoyan, Zhang Jingxian, et al. A review of domestic and foreign ancillary services market for improving flexibility of new power system[J]. Transactions of China Electrotechnical Society, 2023, 38(6): 1662-1677.
[31] Mnih V, Kavukcuoglu K, Silver D, et al. Playing atari with deep reinforcement learning[J]. ArXiv e-Prints, 2013: arXiv: 1312.5602. |