|
|
Self-Learning Anti-Disturbance Control Strategy for High-Speed Linear Induction Motor |
Xu Fei1,2,3, Jiang Xinyu1,2, Li Zixin1,2,3, Shi Liming1,2,3, Li Yaohua1,2,3 |
1. State Key Laboratory of High Density Electromagnetic Power and Systems Institute of Electrical Engineering Chinese Academy of Sciences Beijing 100190 China; 2. University of Chinese Academy of Sciences Beijing 100049 China; 3. Institute of Electrical Engineering and Advanced Electromagnetic Drive Technology QILU ZHONGKE Jinan 250100 China |
|
|
Abstract High-speed linear induction motors have the advantages of light rotor mass, simple structure, and high reliability, which are suitable for ground ultra-high-speed test facilities and electromagnetic launch fields. However, when high-speed linear induction motors run at transonic speeds, the unsteady aerodynamic characteristics of shock waves will cause strong vibrations in the rotor, resulting in strong uncertain disturbances in the position and speed measurement of the linear motor rotor and the electromagnetic mechanism. This uncertain disturbance is short-term, highly dynamic, sudden, and unpredictable. Consequently, slip control of the linear induction motor is abnormal, thrust control is unstable, and the transonic operation fails, seriously restricting the system speed improvement. This paper establishes a self-learning mathematical model of a high-speed linear induction motor. The parameters of the motor model are learned through historical experimental data to realize high-precision multi-step prediction of the mover speed. The prediction speed constructs the rolling prediction matrix, the sensor measurement speed is calculated, and a method for reliability evaluation of the measurement speed is proposed based on the variation degree of the matrix column vector. Finally, according to the weighting of the prediction velocity, the measurement data, and the credibility value, a self-learning anti-disturbance control strategy for a high-speed linear induction motor under uncertain disturbance is proposed to realize the anti-disturbance control under transonic speed conditions. The simulation and experimental results show that the proposed model can realize linear motor rotors’ high-precision multi-step rapid speed prediction. The speed correction method blocks the propagation of uncertain disturbances and accurately suppresses uncertain disturbances. The rotor speed’s simulation error is less than 0.7%, and the experimental error is less than 1%. Under the uncertain disturbance of e=0.2, the proposed self-learning anti-disturbance control strategy can realize the stable control of dq axis current and thrust with good uncertain disturbance suppression capability. The research results can be applied to high-speed linear induction motor propulsion systems.
|
Received: 14 September 2024
|
|
|
|
|
[1] Ma Weiming, Lu Junyong, Liu Yingquan.Research progress of electromagnetic launch technology[J]. IEEE Transactions on Plasma Science, 2019, 47(5): 2197-2205. [2] 鲁军勇, 柳应全. 电磁发射用直线电机及其控制技术综述[J]. 电工技术学报, 2024, 39(19): 5899-5913. Lu Junyong, Liu Yingquan.Review on linear motor for electromagnetic launch and its control tech- nology[J]. Transactions of China Electrotechnical Society, 2024, 39(19): 5899-5913. [3] 马启悦, 高传强, 孙健. 基于神经网络的激波抖振特征提取与始发预测[J]. 航空科学技术, 2024, 35(7): 49-55. Ma Qiyue, Gao Chuanqiang, Sun Jian.Shock buffet feature extraction and onset prediction based on neural network[J]. Aeronautical Science & Tech- nology, 2024, 35(7): 49-55. [4] 高传强, 张伟伟. 机翼跨声速抖振数值模拟及模态分析[J]. 航空学报, 2019, 40(7): 122597. Gao Chuanqiang, Zhang Weiwei.Numerical simu- lation and modal analysis of transonic buffet flow over wings[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7): 122597. [5] Cupertino F, Pellegrino G, Giangrande P, et al.Sensorless position control of permanent-magnet motors with pulsating current injection and com- pensation of motor end effects[J]. IEEE Transactions on Industry Applications, 2011, 47(3): 1371-1379. [6] 杨春雨, 马婷婷, 周林娜, 等. 永磁同步直线电机低速域无位置传感器控制[J]. 微特电机, 2018, 46(9): 59-62, 67. Yang Chunyu, Ma Tingting, Zhou Linna, et al.Sensorless control for permanent magnet synchronous linear motor at low speed[J]. Small & Special Elec- trical Machines, 2018, 46(9): 59-62, 67. [7] 王天擎, 王勃, 于泳, 等. 基于二阶变增益滑模的感应电机电压模型磁链观测器[J]. 中国电机工程学报, 2024, 44(11): 4490-4500. Wang Tianqing, Wang Bo, Yu Yong, et al.Voltage model rotor flux observer of induction motor based on second-order variable gain sliding mode[J]. Pro- ceedings of the CSEE, 2024, 44(11): 4490-4500. [8] 于林鑫, 袁昕, 丁国华, 等. 基于模型预测锁相环的永磁同步电机转子位置估计方法[J]. 电气技术, 2024, 25(8): 18-26, 52. Yu Linxin, Yuan Xin, Ding Guohua, et al.Research on sensorless control of permanent magnet syn- chronous motor based on model predictive method based phase locked loop[J]. Electrical Engineering, 2024, 25(8): 18-26, 52. [9] 王震宇, 孙伟, 蒋栋. 基于虚拟电压注入的闭环磁链观测器的感应电机无速度传感器矢量控制系统[J]. 电工技术学报, 2022, 37(2): 332-343. Wang Zhenyu, Sun Wei, Jiang Dong.Induction motor speed sensorless vector control system based on closed-loop flux observer with virtual voltage injection[J]. Transactions of China Electrotechnical Society, 2022, 37(2): 332-343. [10] 蒋林, 刘梁鸿, 李坤, 等. 基于滑模控制的异步电机全阶观测器研究[J]. 电气传动, 2019, 49(4): 19-22. Jiang Lin, Liu Lianghong, Li Kun, et al.Study on full order observer based on sliding mode control for asynchronous motor[J]. Electric Drive, 2019, 49(4): 19-22. [11] 邹甲, 张健侨, 吉程椿. 基于BP双层神经网络MRAS下PMSM的转速辨识研究[J]. 电气传动, 2023, 53(6): 8-13. Zou Jia, Zhang Jianqiao, Ji Chengchun.Speed identification of permanent magnet synchronous motor based on BP double-layer neural network MRAS[J]. Electric Drive, 2023, 53(6): 8-13. [12] 陈玥轩, 葛兴来, 左运, 等. 一种感应电机无速度传感器系统的电流传感器容错控制策略[J]. 中国电机工程学报, 2022, 42(6): 2346-2356. Chen Yuexuan, Ge Xinglai, Zuo Yun, et al.A current sensor fault-tolerant control strategy for speed- sensorless induction motor system[J]. Proceedings of the CSEE, 2022, 42(6): 2346-2356. [13] 贺玉晓, 王丽梅. 永磁直线同步电动机迭代超螺旋滑模控制[J]. 电气技术, 2022, 23(6): 24-29. He Yuxiao, Wang Limei.Iterative super-twisting sliding mode control for permanent magnet linear synchronous motor[J]. Electrical Engineering, 2022, 23(6): 24-29. [14] 杨凯, 李孺涵, 罗成, 等. 负载变化下无传感器感应电机主动零频穿越及脉动抑制策略[J]. 电工技术学报, 2023, 38(18): 4910-4920. Yang Kai, Li Ruhan, Luo Cheng, et al.Proactive low-frequency ride-through method and its ripple reduction for sensorless induction motor drives under load variations[J]. Transactions of China Electro- technical Society, 2023, 38(18): 4910-4920. [15] 涂炜, 江卫华, 胡为兵, 等. 基于自适应算法的IPMSM无速度传感器研究[J]. 自动化与仪表, 2020, 35(3): 82-87. Tu Wei, Jiang Weihua, Hu Weibing, et al.Research on IPMSM speed sensorless based on adaptive algorithm[J]. Automation & Instrumentation, 2020, 35(3): 82-87. [16] Lu Wenqi, Li Qiang, Lu Kaiyuan, et al.Load adaptive PMSM drive system based on an improved ADRC for manipulator joint[J]. IEEE Access, 2021, 9: 33369-33384. [17] 王建渊, 王海啸, 尹忠刚, 等. 基于一阶线性自抗扰控制器的同步磁阻电机无速度传感器控制[J]. 电工技术学报, 2024, 39(14): 4405-4421. Wang Jianyuan, Wang Haixiao, Yin Zhonggang, et al.Sensorless control of synchronous reluctance motor based on first order linear active disturbance rejection controller[J]. Transactions of China Electrotechnical Society, 2024, 39(14): 4405-4421. [18] Lin Shiyu, Cao Yanfei, Li Chen, et al.Two-degree- of-freedom active disturbance rejection current control for permanent magnet synchronous motors[J]. IEEE Transactions on Power Electronics, 2023, 38(3): 3640-3652. [19] 蒋毅, 廖看秋, 朱跃欧, 等. 基于粒子群优化算法的磁浮列车自抗扰悬浮控制器研究[J]. 电气技术, 2024, 25(7): 39-44, 49. Jiang Yi, Liao Kanqiu, Zhu Yueou, et al.Research on active disturbance rejection suspension controller of maglev train based on particle swarm optimization[J]. Electrical Engineering, 2024, 25(7): 39-44, 49. [20] Wang Bo, Tian Minghe, Yu Yong, et al.Enhanced ADRC with quasi-resonant control for PMSM speed regulation considering aperiodic and periodic dis- turbances[J]. IEEE Transactions on Transportation Electrification, 2022, 8(3): 3568-3577. [21] 方圣龙, 樊继东. 一种基于自抗扰的永磁同步电机复合控制策略[J]. 电机与控制应用, 2023, 50(10): 62-69. Fang Shenglong, Fan Jidong.A composite control strategy of permanent magnet synchronous motor based on active disturbance rejection[J]. Electric Machines & Control Application, 2023, 50(10): 62-69. [22] 高云雷, 王玉彬, 黄瑛. 基于自抗扰迭代学习控制的双定子磁场调制电机转矩脉动抑制策略[J]. 电机与控制应用, 2021, 48(6): 10-16. Gao Yunlei, Wang Yubin, Huang Ying.Torque ripple suppression strategy of field-modulation double-stator motor based on ILC-ADRC[J]. Electric Machines & Control Application, 2021, 48(6): 10-16. [23] Wang Yicheng, Fang Shuhua, Hu Jianxiong.Active disturbance rejection control based on deep reinforcement learning of PMSM for more electric aircraft[J]. IEEE Transactions on Power Electronics, 2023, 38(1): 406-416. [24] 李中奇, 周靓, 杨辉. 高速动车组数据驱动无模型自适应控制方法[J]. 自动化学报, 2023, 49(2): 437-447. Li Zhongqi, Zhou Liang, Yang Hui.Data-driven model-free adaptive control method for high-speed electric multiple unit[J]. Acta Automatica Sinica, 2023, 49(2): 437-447. [25] 郑鑫鑫, 张大海, 曹荣敏, 等. 改进无模型自适应迭代学习的直线电机滑模控制[J]. 电机与控制学报, 2024, 28(7): 120-130. Zheng Xinxin, Zhang Dahai, Cao Rongmin, et al.Improved model free adaptive iterative learning control for linear motor sliding mode control[J]. Electric Machines and Control, 2024, 28(7): 120-130. [26] 程苗苗, 翟朋辉, 张英杰, 等. 基于自学习非线性PID的音圈电机精密定位系统[J]. 电工技术学报, 2023, 38(6): 1519-1530. Cheng Miaomiao, Zhai Penghui, Zhang Yingjie, et al.A voice coil motor-driven precision positioning system based on self-learning nonlinear PID[J]. Transactions of China Electrotechnical Society, 2023, 38(6): 1519-1530. [27] 徐飞, 李子欣, 孔甘霖, 等. 变长分段直线感应电机数学建模[J]. 中国电机工程学报, 2024, 44(13): 5338-5348. Xu Fei, Li Zixin, Kong Ganlin, et al.Mathematical model of variable-length segmented linear induction motor[J]. Proceedings of the CSEE, 2024, 44(13): 5338-5348. [28] 张明远, 史黎明, 范满义, 等. 长初级双边直线感应电动机分段推力协同控制和测速算法[J]. 电工技术学报, 2023, 38(3): 659-669. Zhang Mingyuan, Shi Liming, Fan Manyi, et al.Thrust cooperative control and speed measurement algorithm of segmented long primary double-sided linear induction motor[J]. Transactions of China Elec- trotechnical Society, 2023, 38(3): 659-669. |
|
|
|