[1] Song Yonghua, Yang Xia, Lu Zongxiang.Integration of plug-in hybrid and electric vehicles: experience from China[C]//IEEE PES General Meeting, Minneapolis, MN, USA, 2010: 1-6.
[2] 刘动, 孟晨旭, 潘正阳, 等. 居民小区经营性电动汽车充电站投资建设研究[J]. 电气技术, 2022, 23(6): 104-108.
Liu Dong, Meng Chenxu, Pan Zhengyang, et al.Research on investment and construction of commercial electric vehicle charging station in housing estate[J]. Electrical Engineering, 2022, 23(6): 104-108.
[3] 王晓姬, 王道涵, 王柄东, 等. 电动汽车驱动/充电一体化系统及其控制策略综述[J]. 电工技术学报, 2023, 38(22): 5940-5958.
Wang Xiaoji, Wang Daohan, Wang Bingdong, et al.A review of drive-charging integrated systems and control strategies for electric vehicles[J]. Transactions of China Electrotechnical Society, 2023, 38(22): 5940-5958.
[4] Wang Bo, Dehghanian P, Wang Shiyuan, et al.Electrical safety considerations in large-scale electric vehicle charging stations[J]. IEEE Transactions on Industry Applications, 2019, 55(6): 6603-6612.
[5] Chukwu U C.The impact of V2G on power factors[C]//2020 Clemson University Power Systems Conference (PSC), Clemson, SC, USA, 2020: 1-4.
[6] 徐潇源, 李佳琪, 王晗, 等. 城市电力-交通系统韧性研究综述及展望[J]. 电力系统自动化, 2024, 48(23): 1-15.
Xu Xiaoyuan, Li Jiaqi, Wang Han, et al.Review and prospect of research on urban power-transportation system resilience[J]. Automation of Electric Power Systems, 2024, 48(23): 1-15.
[7] 范培潇, 杨军, 温裕鑫, 等. 基于可进化模型预测控制的含电动汽车多微电网智能发电控制策略[J]. 电工技术学报, 2024, 39(3): 699-713.
Fan Peixiao, Yang Jun, Wen Yuxin, et al.A multi microgrid intelligent generation control strategy with electric vehicles based on evolutionary model predictive control[J]. Transactions of China Electrotechnical Society, 2024, 39(3): 699-713.
[8] 韩丽, 陈硕, 王施琪, 等. 考虑风光消纳与电动汽车灵活性的调度策略[J]. 电工技术学报, 2024, 39(21): 6793-6803.
Han Li, Chen Shuo, Wang Shiqi, et al.Scheduling strategy considering wind and photovoltaic power consumption and the flexibility of electric vehicles[J]. Transactions of China Electrotechnical Society, 2024, 39(21): 6793-6803.
[9] 杨祺铭, 李更丰, 别朝红, 等. 台风灾害下基于V2G的城市配电网弹性提升策略[J]. 电力系统自动化, 2022, 46(12): 130-139.
Yang Qiming, Li Gengfeng, Bie Zhaohong, et al.Vehicle-to-grid based resilience promotion strategy for urban distribution network under typhoon disaster[J]. Automation of Electric Power Systems, 2022, 46(12): 130-139.
[10] Jin Yuwei, Yu B, Seo M, et al.Optimal aggregation design for massive V2G participation in energy market[J]. IEEE Access, 2020, 8: 211794-211808.
[11] 王飞, 李美颐, 张旭东, 等. 需求响应资源潜力评估方法、应用及展望[J]. 电力系统自动化, 2023, 47(21): 173-191.
Wang Fei, Li Meiyi, Zhang Xudong, et al.Assessment methods for demand response resource potential and their application and prospect[J]. Automation of Electric Power Systems, 2023, 47(21): 173-191.
[12] Sarker M R, Dvorkin Y, Ortega-Vazquez M A. Optimal participation of an electric vehicle aggregator in day-ahead energy and reserve markets[J]. IEEE Transactions on Power Systems, 2016, 31(5): 3506-3515.
[13] 张谦, 邓小松, 岳焕展, 等. 计及电池寿命损耗的电动汽车参与能量-调频市场协同优化策略[J]. 电工技术学报, 2022, 37(1): 72-81.
Zhang Qian, Deng Xiaosong, Yue Huanzhan, et al.Coordinated optimization strategy of electric vehicle cluster participating in energy and frequency regulation markets considering battery lifetime degradation[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 72-81.
[14] Pertl M, Carducci F, Tabone M, et al.An equivalent time-variant storage model to harness EV flexibility: forecast and aggregation[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4): 1899-1910.
[15] Bhattarai B, de Cerio Mendaza I D, Myers K, et al. Optimum aggregation and control of spatially distributed flexible resources in smart grid[C]//2018 IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, 2018: 1-1.
[16] Wang Xiaofei, Li Fangxing, Dong Jin, et al.Tri-level scheduling model considering residential demand flexibility of aggregated HVACs and EVs under distribution LMP[J]. IEEE Transactions on Smart Grid, 2021, 12(5): 3990-4002.
[17] 罗卓伟, 胡泽春, 宋永华, 等. 大规模电动汽车充放电优化控制及容量效益分析[J]. 电力系统自动化, 2012, 36(10): 19-26.
Luo Zhuowei, Hu Zechun, Song Yonghua, et al.Coordinated charging and discharging of large-scale plug-in electric vehicles with cost and capacity benefit analysis[J]. Automation of Electric Power Systems, 2012, 36(10): 19-26.
[18] Qian Kejun, Zhou Chengke, Allan M, et al.Modeling of load demand due to EV battery charging in distribution systems[J]. IEEE Transactions on Power Systems, 2011, 26(2): 802-810.
[19] O’Malley C, Badesa L, Teng Fei, et al. Frequency response from aggregated V2G chargers with uncertain EV connections[J]. IEEE Transactions on Power Systems, 2022: 1-14.
[20] Said D, Mouftah H T.A novel electric vehicles charging/discharging management protocol based on queuing model[J]. IEEE Transactions on Intelligent Vehicles, 2020, 5(1): 100-111.
[21] Shen Jiaming, Wang Laili, Zhang Jialei.Integrated scheduling strategy for private electric vehicles and electric taxis[J]. IEEE Transactions on Industrial Informatics, 2020, 17(3): 1637-1647.
[22] Zhou Ming, Wu Zhaoyuan, Wang Jianxiao, et al.Forming dispatchable region of electric vehicle aggregation in microgrid bidding[J]. IEEE Transactions on Industrial Informatics, 2021, 17(7): 4755-4765.
[23] 王杨洋, 茆美琴, 杨铖, 等. 面向多场景辅助服务的大规模电动汽车聚合可调度容量建模[J]. 电力系统自动化, 2024, 48(7): 103-115.
Wang Yangyang, Mao Meiqin, Yang Cheng, et al.Aggregated and schedulable capacity modeling of large-scale electric vehicles for multi-scenario auxiliary services[J]. Automation of Electric Power Systems, 2024, 48(7): 103-115.
[24] 徐俊俊, 程奕凌, 张腾飞, 等. 计及充电行为特征与可调性的电动汽车集群优化调度[J]. 电力系统自动化, 2023, 47(23): 23-32.
Xu Junjun, Cheng Yiling, Zhang Tengfei, et al.Optimal scheduling of electric vehicle clusters considering characteristics and adjustability of charging behavior[J]. Automation of Electric Power Systems, 2023, 47(23): 23-32.
[25] Yin Wanjun, Qin Xuan.Cooperative optimization strategy for large-scale electric vehicle charging and discharging[J]. Energy, 2022, 258: 124969.
[26] 王雨晴, 王文诗, 徐心竹, 等. 面向低碳交通的含新能源汽车共享站电-氢微能源网区间-随机混合规划方法[J]. 电工技术学报, 2023, 38(23): 6373-6390.
Wang Yuqing, Wang Wenshi, Xu Xinzhu, et al.Hybrid interval/stochastic planning method for new energy vehicle sharing station-based electro-hydrogen micro-energy system for low-carbon transportation[J]. Transactions of China Electrotechnical Society, 2023, 38(23): 6373-6390.
[27] 师景佳, 袁铁江, Saeed Ahmed Khan, 等. 计及电动汽车可调度能力的风/车协同参与机组组合策略[J]. 高电压技术, 2018, 44(10): 3433-3440.
Shi Jingjia, Yuan Tiejiang, Khan S A, et al.Unit commitment strategy considering cooperated dispatch of electric vehicles based on scheduling capacity and wind power generation[J]. High Voltage Engineering, 2018, 44(10): 3433-3440.
[28] 史文龙, 秦文萍, 王丽彬, 等. 计及电动汽车需求和分时电价差异的区域电网LSTM调度策略[J]. 中国电机工程学报, 2022, 42(10): 3573-3587.
Shi Wenlong, Qin Wenping, Wang Libin, et al.Regional power grid LSTM dispatch strategy considering the difference between electric vehicle demand and time-of-use electricity price[J]. Proceedings of the CSEE, 2022, 42(10): 3573-3587.
[29] 杨镜司, 秦文萍, 史文龙, 等. 基于电动汽车参与调峰定价策略的区域电网两阶段优化调度[J]. 电工技术学报, 2022, 37(1): 58-71.
Yang Jingsi, Qin Wenping, Shi Wenlong, et al.Two-stage optimal dispatching of regional power grid based on electric vehicles' participation in peak-shaving pricing strategy[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 58-71.
[30] Karfopoulos E L, Panourgias K A, Hatziargyriou N D.Distributed coordination of electric vehicles providing V2G regulation services[J]. IEEE Transactions on Power Systems, 2016, 31(4): 2834-2846.
[31] Peng Chao, Zou Jianxiao, Lian Lian.Dispatching strategies of electric vehicles participating in frequency regulation on power grid: a review[J]. Renewable and Sustainable Energy Reviews, 2017, 68: 147-152.
[32] 邓荣楠, 宋梦, 高赐威, 等. 考虑用户负荷决策依赖特性的配电网灾后恢复方法对比分析[J]. 电工技术学报, 2024, 39(23): 7447-7462.
Deng Rongnan, Song Meng, Gao Ciwei, et al.Comparative analysis of distribution system load restoration considering decision-dependent behaviors of customers[J]. Transactions of China Electrotechnical Society, 2024, 39(23): 7447-7462.
[33] 陈磊, 邓欣怡, 陈红坤, 等. 电力系统韧性评估与提升研究综述[J]. 电力系统保护与控制, 2022, 50(13): 11-22.
Chen Lei, Deng Xinyi, Chen Hongkun, et al.Review of the assessment and improvement of power system resilience[J]. Power System Protection and Control, 2022, 50(13): 11-22.
[34] 翟志气. EV直流快充场景的动力电池组冷却技术研究[D]. 长春: 吉林大学, 2024.
Zhai Zhiqi.Research on cooling technology of power battery pack in EV DC fast charging scene[D]. Changchun: Jilin University, 2024.
[35] Serhan H A, Ahmed E M.Effect of the different charging techniques on battery life-time: Review[C]//2018 International Conference on Innovative Trends in Computer Engineering (ITCE), Aswan, Egypt, 2018: 421-426.
[36] Gao Yizhao, Zhang Xi, Cheng Qiyu, et al.Classification and review of the charging strategies for commercial lithium-ion batteries[J]. IEEE Access, 2019, 7: 43511-43524.
[37] 刘向军, 牟明亮, 黄绍模, 等. 考虑充电功率衰减的电动汽车两阶段优化调度策略[J]. 电网技术, 2021, 45(7): 2656-2666.
Liu Xiangjun, Mu Mingliang, Huang Shaomo, et al.Two-stage optimal scheduling strategy of electric vehicle considering charging power decay[J]. Power System Technology, 2021, 45(7): 2656-2666.
[38] 孙丙香, 李凯鑫, 荆龙, 等. 锂离子电池不同工况下充电效果对比及用户充电方法选择研究[J]. 电工技术学报, 2023, 38(20): 5634-5644.
Sun Bingxiang, Li Kaixin, Jing Long, et al.Comparison of charging effect of lithium-ion battery under different working strategies and study on user charging method selection[J]. Transactions of China Electrotechnical Society, 2023, 38(20): 5634-5644.
[39] 罗平, 杨泽喆, 张嘉昊, 等. 考虑多场景充电需求预测的电动汽车充电站规划[J]. 高电压技术, 2025, 51(1): 368-378.
Luo Ping, Yang Zezhe, Zhang Jiahao, et al.Electric vehicle charging station planning considering multi-scene charging demand forecasting[J]. High Voltage Engineering, 2025, 51(1): 368-378. |