|
|
A Denoising Method for AC Contactor Operating State Feature Data Based on Adaptive Multi-Scale Morphological Filter |
Liu Shuxin, Qi Xinzhi, Ming Xin, Xing Chaojian, Xu Jing |
Key Laboratory of Special Electric Machines and High Voltage Apparatus in the Ministry of Education Shenyang University of Technology Shenyang 110870 China |
|
|
Abstract High-quality operating state feature data is crucial for the reliability analysis of AC contactors and serves as the foundation for research on residual life prediction and state identification of AC contactors. However, factors such as the singularity of the feature extraction program, electrical interference, and measurement errors often result in a significant amount of noise in the feature data. Moreover, traditional noise reduction technologies struggle to effectively reduce noise content due to issues of modal aliasing and low denoising resolution in feature data. Therefore, this paper proposes a denoising method for feature data based on the adaptive multi-scale morphological filter (AMMF). Initially, this paper employs curve envelopes to decompose feature data into multi-scale components and introduces Triangle thresholds and adaptive structural elements to enhance traditional morphological filtering techniques. Accordingly, the method can adapt to differences in the distribution of various scale spectra, thereby constructing the AMMF denoising model. Subsequently, the autocorrelation function characteristics of the components are utilized to identify noisy components. The AMMF is then applied to extract the effective frequency bands of these noisy components, which are inversely transformed and reconstructed into feature data. Finally, this paper compares the proposed method with six denoising techniques, using signal-to-noise ratio, cross-correlation coefficient, and average autocorrelation coefficient as evaluation metrics. The results demonstrate that the proposed method effectively reduces the noise content in AC contactor feature data. Regarding the autocorrelation coefficient metric, the temporal correlation of feature data processed by AMMF is significantly enhanced. Specifically, the full-period average autocorrelation coefficients of four critical feature data—bounce time, contact resistance, release time, and closing time—improve from 0.027, 0.098, 0.035, and 0.011 to 0.154, 0.166, 0.106, and 0.079, respectively. Concurrently, the signal-to-noise ratios of these four datasets after processing reach 23.1, 28.1, 33.27, and 36.34 dB, respectively, with correlation coefficients relative to contactor life amounting to 0.68, 0.61, -0.58, and 0.48, respectively. These numerical values of the three metrics indicate that the AMMF outperforms comparison methods in processing AC contactor operating state feature data. The following conclusions are drawn from the case analysis. (1) The improved morphological filtering technique mitigates the issues of modal aliasing and low denoising resolution in feature data. (2) The method of determining the signal-to-noise boundary using the autocorrelation coefficient can effectively reduce the subjectivity of traditional methods in identifying noisy components. (3) Compared to traditional denoising techniques, the proposed method exhibits significant advantages in noise reduction and information retention.
|
Received: 02 July 2024
|
|
|
|
|
[1] 刘向军, 杨程, 周煜源. 基于多反馈参量的交流接触器自适应吸持控制策略[J]. 电工技术学报, 2023, 38(2): 554-562. Liu Xiangjun, Yang Cheng, Zhou Yuyuan.Adaptive holding control strategy of AC contactor based on multiple feedback parameters[J]. Transactions of China Electrotechnical Society, 2023, 38(2): 554-562. [2] 蒋幸伟, 曹云东, 刘洋, 等. 基于多特征增强融合的交流接触器状态表征[J]. 高电压技术, 2024, 50(1): 282-291. Jiang Xingwei, Cao Yundong, Liu Yang, et al.State characterization of AC contactor based on multi- feature enhanced fusion[J]. High Voltage Engineering, 2024, 50(1): 282-291. [3] Liu Shuxin, Gao Shuyu, Peng Shidong, et al.Residual-electrical-endurance prediction of AC contactor based on CNN-GRU[J]. Machines, 2022, 10(11): 1067. [4] Abirami S, Ruthvik S, Sathiq Ali M, et al.AC contactor electrical health estimator model[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1145(1): 012070. [5] 刘树鑫, 周柱, 刘洋, 等. 基于振动信号的交流接触器触头系统退化阶段划分[J]. 高电压技术, 2023, 49(12): 4971-4981. Liu Shuxin, Zhou Zhu, Liu Yang, et al.Degradation phase division of AC contactor contact system based on vibration signal[J]. High Voltage Engineering, 2023, 49(12): 4971-4981. [6] 于春雨, 张文韬, 张庆海, 等. 基于EMD-AR与改进宽度学习系统的滚动轴承故障诊断方法[J]. 中国电机工程学报, 2023, 43(22): 8944-8955. Yu Chunyu, Zhang Wentao, Zhang Qinghai, et al.Fault diagnosis method of a rolling bearing on EMD-AR and improved broad learning system[J]. Proceedings of the CSEE, 2023, 43(22): 8944-8955. [7] 唐志国, 李阳. 基于改进无参尺度空间经验小波变换的变压器高频电流局放噪声抑制研究[J]. 高压电器, 2024, 60(1): 144-153. Tang Zhiguo, Li Yang.Research on partial discharge noise suppression of transformer based on improved parameterless scale space empirical wavelet trans- form[J]. High Voltage Apparatus, 2024, 60(1): 144-153. [8] 刘帼巾, 刘达明, 缪建华, 等. 基于变分模态分解和改进灰狼算法优化深度置信网络的自动转换开关故障识别[J]. 电工技术学报, 2024, 39(4): 1221-1233. Liu Guojin, Liu Daming, Miao Jianhua, et al.Fault identification of automatic transfer switching equipment based on VMD-WPE and IGWO optimized DBN[J]. Transactions of China Electrotechnical Society, 2024, 39(4): 1221-1233. [9] 王晓卫, 王雪, 王毅钊, 等. 基于图像信息熵与多元变分模态分解的电缆局放信号去噪方法[J]. 电工技术学报, 2024, 39(13): 4100-4115, 4152. Wang Xiaowei, Wang Xue, Wang Yizhao, et al.A denoising algorithm for cable partial discharge signals based on image information entropy and multivariate variational mode decomposition[J]. Transactions of China Electrotechnical Society, 2024, 39(13): 4100-4115, 4152. [10] 李忠. 基于小波包与回声状态网的风电功率预测[J]. 电气工程学报, 2021, 16(3): 123-129. Li Zhong.Wind power forecasting based on wavelet packet and echo state network[J]. Journal of Electrical Engineering, 2021, 16(3): 123-129. [11] Shamaee Z, Mivehchy M.Dominant noise-aided EMD (DEMD): extending empirical mode decomposition for noise reduction by incorporating dominant noise and deep classification[J]. Biomedical Signal Pro- cessing and Control, 2023, 80: 104218. [12] Chen Wuge, Li Junning, Wang Qian, et al.Fault feature extraction and diagnosis of rolling bearings based on wavelet thresholding denoising with CEEMDAN energy entropy and PSO-LSSVM[J]. Measurement, 2021, 172: 108901. [13] 陈太聪, 张奇. 基于频谱能量形态拟合的加速度积分方法研究[J]. 振动与冲击, 2019, 38(13): 7-12, 20. Chen Taicong, Zhang Qi.Acceleration integration method based on frequency spectral energy morphological fitting[J]. Journal of Vibration and Shock, 2019, 38(13): 7-12, 20. [14] 李展铨, 陈太聪. 基于Welch功率谱的加速度积分改进方法研究[J]. 振动与冲击, 2022, 41(18): 41-46, 54. Li Zhanquan, Chen Taicong.Improved acceleration integration method based on Welch power spectrum[J]. Journal of Vibration and Shock, 2022, 41(18): 41-46, 54. [15] 陈媛, 段文献, 何怡刚, 等. 带降噪自编码器和门控递归混合神经网络的电池健康状态估算[J]. 电工技术学报, 2024, 39(24): 7933-7949. Chen Yuan, Duan Wenxian, He Yigang, et al.State of health estimation of lithium ion battery based on denoising autoencoder-gated recurrent unit[J]. Transactions of China Electrotechnical Society, 2024, 39(24): 7933-7949. [16] 尹杰, 刘博, 孙国兵, 等. 基于迁移学习和降噪自编码器-长短时间记忆的锂离子电池剩余寿命预测[J]. 电工技术学报, 2024, 39(1): 289-302. Yin Jie, Liu Bo, Sun Guobing, et al.Transfer learning denoising autoencoder-long short term memory for remaining useful life prediction of Li-ion batteries[J]. Transactions of China Electrotechnical Society, 2024, 39(1): 289-302. [17] 闫晓丽. 基于数学形态学与混沌理论的滚动轴承故障诊断研究[D]. 北京: 华北电力大学, 2022. Yan Xiaoli.Research on rolling bearing fault diagnosis based on mathematical morphology and chaos theory[D]. Beijing: North China Electric Power University, 2022. [18] Li Dewang, Ma Qiang, Bai Xuezong, et al.A morphological filtering-based strain data processing method for biaxial fatigue testing of wind turbine blades[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2023, 237(17): 4005-4016. [19] 方志法, 王维民, 曹颜玉, 等. 基于自适应变尺度形态学滤波的冲击提取方法[J]. 振动测试与诊断, 2023, 43(4): 698-704, 828. Fang Zhifa, Wang Weimin, Cao Yanyu, et al.Impact feature extraction based on the adaptive variable scale morphological filter[J]. Journal of Vibration, Mea- surement & Diagnosis, 2023, 43(4): 698-704, 828. [20] 王晓龙, 石海超, 熊江涛, 等. 基于自适应多尺度形态学梯度乘积运算的发电机振动信号特征增强检测[J]. 中国电机工程学报, 2025, 45(8): 3195-3205. Wang Xiaolong, Shi Haichao, Xiong Jiangtao, et al.Enhanced detection of generator vibration signals characteristic based on adaptive multi-scale morpho- logical gradient product operation[J] Proceedings of the CSEE, 2025, 45(8): 3195-3205. [21] 李文华, 姜惠, 赵正元, 等. 基于波形匹配端点延拓法优化的经验模态分解算法在铁路继电器参数降噪上的应用[J]. 电工技术学报, 2022, 37(10): 2656-2664. Li Wenhua, Jiang Hui, Zhao Zhengyuan, et al.Application of empirical mode decomposition algorithm based on waveform matching endpoint continuation method in noise reduction of railway relay parameters[J]. Transactions of China Electro- technical Society, 2022, 37(10): 2656-2664. [22] Ni Zexing, He Dan, Wang Xiufeng, et al.Research on the detection of axle abnormal noise based on maximum autocorrelation kurtosis deconvolution[J]. Applied Acoustics, 2023, 203: 109228. [23] 王中, 李振华, 成俊杰, 等. Rogowski线圈电流互感器故障的早期诊断研究[J]. 高压电器, 2023, 59(2): 162-168. Wang Zhong, Li Zhenhua, Cheng Junjie, et al.Research on early diagnosis of fault of current transformer with Rogowski coil[J]. High Voltage Apparatus, 2023, 29(2): 162-168. |
|
|
|