|
|
Low Frequency Oscillation Analysis Method for Grid-Forming Doubly-Fed Wind Power Systems Based on Energy Structures |
Sun Zhenglong, Hao Shuyu, Li Mingda, Pan Chao, Cai Guowei |
Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology Ministry of Education Northeast Electric Power University Jilin 132012 China |
|
|
Abstract In large long-distance transmission system,weakly damped oscillations sometimes occur.The integration of Grid-forming doubly-fed wind turbines into the system plays an active role in supporting the power grid. As the capacity of Grid-forming doubly-fed wind turbines increases, the phenomenon of Grid-forming doubly-fed wind turbines participating in system interval oscillations will gradually become prominent. Firstly, the energy structure of synchronous generator and Grid-forming doubly-fed wind turbine is derived from the energy of component ports, and the energy properties of the energy structure are classified, and the interaction relationship between component kinetic energy and port energy is analyzed.Secondly, the actual kinetic energy of the component is decomposed in time domain, and the incremental kinetic energy and mode kinetic energy are obtained.Then, from the Angle of eigenvalue analysis, kinetic energy increment and mode kinetic energy are analyzed, and the theoretical basis for analyzing the vibration degree and mode of each unit in the power system of Grid-forming doubly-fed wind turbine is explained.In addition, by using kinetic energy increment and mode kinetic energy, a composite index is established, which evaluates the degree of oscillation participation of each unit and group division in the system interval oscillation from the perspective of amplitude and phase. This index provides a quantitative basis for the analysis of low-frequency oscillation of power system with Grid-forming doubly-fed wind turbine. The mode kinetic energy and kinetic energy increment curves of the dominant oscillation modes of each generator set are given in the four-generator two-area system. The index of oscillation participation is obtained based on kinetic energy, and the results of the index are consistent with the traditional eigenvalue analysis.At the same time, in the scenario of multiple Grid-forming doubly-fed wind turbines, the method is still applicable and has certain feasibility.This method can provide guidance for the suppression of low frequency oscillations in power system. The conclusions of this paper are given as follows: (1) This paper established the structure energy of Grid-forming doubly-fed wind turbine and synchronous generator , and based on the interaction energy dissipation - transfer process to build the corresponding energy structure, and extract the transient kinetic energy,There is an interaction process between kinetic energy term and port energy. (2) Through the combined analysis of kinetic energy correlation terms and eigenvalue method, it is proved that the incremental amplitude of kinetic energy of synchronous generator and Grid-forming doubly-fed wind turbine can reflect the participation degree of each unit in the interval oscillation;The phase of the corresponding modal kinetic energy can reflect the modal information of each unit. (3) The method proposed in this paper can analyze the system interval oscillation online, without the use of additional electric gas, only the kinetic energy related items of each unit are extracted, and combined with the WAMS , the participation degree of each unit and the division of the group in the system interval oscillation mode can be realized.
|
Received: 19 February 2024
|
|
|
|
|
[1] 孙大卫, 刘辉, 李蕴红, 等. 风火/光火打捆系统中逆变电源调频与惯量控制对低频振荡的影响机理[J]. 中国电机工程学报, 2021, 41(17): 5947-5957. Sun Dawei, Liu Hui, Li Yunhong, et al.Effect mechanism of primary frequency and virtual inertia control of inverter power on low frequency oscillation in wind-thermal/solar-thermal bundled system[J]. Proceedings of the CSEE, 2021, 41(17): 5947-5957. [2] 王海鑫, 刘铭崎, 董鹤楠, 等. 含高比例新能源的电力系统低频振荡分析与抑制综述[J]. 电力自动化设备, 2023, 43(9): 152-163. Wang Haixin, Liu Mingqi, Dong Henan, et al.Review on analysis and suppression of low-frequency oscillation in power system with high penetration of renewable energy sources[J]. Electric Power Automation Equipment, 2023, 43(9): 152-163. [3] 张旭, 陈云龙, 岳帅, 等. 风电参与电力系统调频技术研究的回顾与展望[J]. 电网技术, 2018, 42(6): 1793-1803. Zhang Xu, Chen Yunlong, Yue Shuai, et al.Retrospect and prospect of research on frequency regulation technology of power system by wind power[J]. Power System Technology, 2018, 42(6): 1793-1803. [4] Roscoe A, Knueppel T, Da Silva R, et al.Response of a grid forming wind farm to system events, and the impact of external and internal damping[J]. IET Renewable Power Generation, 2020, 14(19): 3908-3917. [5] 谢震, 孟浩, 张兴, 等. 基于定子虚拟阻抗的双馈风电机组虚拟同步控制策略[J]. 电力系统自动化, 2018, 42(9): 157-163, 187. Xie Zhen, Meng Hao, Zhang Xing, et al.Virtual synchronous control strategy of DFIG-based wind turbines based on stator virtual impedance[J]. Automation of Electric Power Systems, 2018, 42(9): 157-163, 187. [6] Bu Siqi, Du Wenjuan, Wang Haifeng.Model validation of DFIGs for power system oscillation stability analysis[J]. IET Renewable Power Generation, 2017, 11(6): 858-866. [7] Du Wenjuan, Bi Jingtian, Cao Jun, et al.A method to examine the impact of grid connection of the DFIGs on power system electromechanical oscillation modes[J]. IEEE Transactions on Power Systems, 2016, 31(5): 3775-3784. [8] Du Wenjuan, Bi Jingtian, Wang H F.Small-signal angular stability of power system as affected by grid-connected variable speed wind generators-a survey of recent representative works[J]. CSEE Journal of Power and Energy Systems, 2017, 3(3): 223-231. [9] 李辉, 王坤, 胡玉, 等. 双馈风电系统虚拟同步控制的阻抗建模及稳定性分析[J]. 中国电机工程学报, 2019, 39(12): 3434-3443. Li Hui, Wang Kun, Hu Yu, et al.Impedance modeling and stability analysis of virtual synchronous control based on doubly-fed wind generation systems[J]. Proceedings of the CSEE, 2019, 39(12): 3434-3443. [10] 洪敏. 弱电网下双馈风机的同步控制动态特性及其协调控制策略研究[D]. 杭州: 浙江大学, 2017. Hong Min.Reseach on the dynamic behaviors of DFIG wind turbines in weak grids with synchronized control and its coordinated control strategy[D]. Hangzhou: Zhejiang University, 2017. [11] 周鹏, 张新燕, 邸强, 等. 基于虚拟同步机控制的双馈风电机组预同步并网策略[J]. 电力系统自动化, 2020, 44(14): 71-78. Zhou Peng, Zhang Xinyan, Di Qiang, et al.Pre-synchronous grid-connection strategy of DFIG-based wind turbine with virtual synchronous generator control[J]. Automation of Electric Power Systems, 2020, 44(14): 71-78. [12] Gao Fang, Iravani M R.A control strategy for a distributed generation unit in grid-connected and autonomous modes of operation[J]. IEEE Transactions on Power Delivery, 2008, 23(2): 850-859. [13] Hou X, Sun Y, Zhang X, et al.Improvement of frequency regulation in VSG-based AC microgrid via adaptive virtual inertia[J]. IEEE Transactions on Power Electronics, 2020, 35(2): 1589-1602. [14] Pogaku N, Prodanovic M, Green T C.Modeling, analysis and testing of autonomous operation of an inverter-based microgrid[J]. IEEE Transactions on Power Electronics, 2007, 22(2): 613-625. [15] Zhang Lidong, Harnefors L, Nee H P.Power-synchronization control of grid-connected voltage-source converters[J]. IEEE Transactions on Power Systems, 2010, 25(2): 809-820. [16] 张家玮, 张琛, 史先强, 等. 储能型静止无功发生装置及其自同步电压源控制[J]. 高电压技术, 2023, 49(1): 61-71. Zhang Jiawei, Zhang Chen, Shi Xianqiang, et al.Energy-storage-type static var generator and its autonomous-synchronization voltage source control[J]. High Voltage Engineering, 2023, 49(1): 61-71. [17] Johnson B B, Dhople S V, Hamadeh A O, et al.Synchronization of parallel single-phase inverters with virtual oscillator control[J]. IEEE Transactions on Power Electronics, 2014, 29(11): 6124-6138. [18] 屠勇, 苏建徽, 杨向真, 等. 虚拟振荡器控制的新型逆变器无线并联方案[J]. 中国电机工程学报, 2016, 36(15): 4184-4192. Tu Yong, Su Jianhui, Yang Xiangzhen, et al.A novel virtual oscillator control in wireless parallel connected inverters[J]. Proceedings of the CSEE, 2016, 36(15): 4184-4192. [19] Groß D, Colombino M, Brouillon J S, et al.The effect of transmission-line dynamics on grid-forming dispatchable virtual oscillator control[J]. IEEE Transactions on Control of Network Systems, 2019, 6(3): 1148-1160. [20] Zhong Qingchang, Weiss G.Synchronverters: inverters that mimic synchronous generators[J]. IEEE Transactions on Industrial Electronics, 2011, 58(4): 1259-1267. [21] Fu Siqi, Sun Yao, Liu Zhangjie, et al.Power oscillation suppression in multi-VSG grid with adaptive virtual inertia[J].International Journal of Electrical Power & Energy Systems, 2022, 135: 107472. [22] Huang Linbin, Xin Huanhai, Wang Zhen.Damping low-frequency oscillations through VSC-HVdc stations operated as virtual synchronous machines[J]. IEEE Transactions on Power Electronics, 2019, 34(6): 5803-5818. [23] Wang Weiyu, Jiang Lin, Cao Yijia, et al.A parameter alternating VSG controller of VSC-MTDC systems for low frequency oscillation damping[J]. IEEE Transactions on Power Systems, 2020, 35(6): 4609-4621. [24] Zhou Xinyi, Cheng Shu, Wu Xun, et al.Influence of photovoltaic power plants based on VSG technology on low frequency oscillation of multi-machine power systems[J]. IEEE Transactions on Power Delivery, 2022, 37(6): 5376-5384. [25] 韩应生, 孙海顺, 秦世耀, 等. 电压源型双馈风电并网系统小扰动低频稳定性分析[J]. 电工技术学报, 2023, 38(5): 1312-1324, 1374. Han Yingsheng, Sun Haishun, Qin Shiyao, et al.Low-frequency stability analysis of voltage-sourced doubly-fed wind power grid-connected system under small disturbance[J]. Transactions of China Electrotechnical Society, 2023, 38(5): 1312-1324, 1374. [26] 杨涛, 廖勇. 含双馈风电场的互联电力系统虚拟惯量与虚拟阻尼协调控制方法[J]. 电力自动化设备, 2020, 40(11): 92-100. Yang Tao, Liao Yong.Coordinated control method of virtual inertia and virtual damping for interconnected power system with doubly-fed wind farm[J]. Electric Power Automation Equipment, 2020, 40(11): 92-100. [27] 张祥宇, 黄泳漩, 付媛. 非线性弹性耦合下双馈风电机组的暂态能量转移与振荡特性分析[J]. 电工技术学报, 2024, 39(13): 3956-3974. Zhang Xiangyu, Huang Yongxuan, Fu Yuan.Transient energy transfer and oscillation characteristics analysis of doubly-fed wind turbine under nonlinear elastic couplin[J]. Transactions of China Electrotechnical Society, 2024, 39(13): 3956-3974. [28] 谢震, 许可宝, 秦世耀, 等. 基于电压源型和电流源型双馈风电机组稳定性对比分析[J]. 电网技术, 2021, 45(5): 1724-1735. Xie Zhen, Xu Kebao, Qin Shiyao, et al.Comparative analysis of doubly-fed wind turbine stability based on voltage source and current source[J]. Power System Technology, 2021, 45(5): 1724-1735. [29] Perez-arriaga I J, Verghese G C, Schweppe F C. Selective modal analysis with applications to electric power systems, PART I: heuristic introduction[J]. IEEE Transactions on Power Apparatus and Systems, 1982, PAS-101(9): 3117-3125. [30] Byerly R, Bennon R, Sherman D. Eigenvalue analysis of synchronizing power flow oscillations in large electric power systems[J]. IEEE Transactions on Power Apparatus and Systems, 1982, PAS-101(1): 235-243. [31] 李天云, 高磊, 赵妍. 基于HHT的电力系统低频振荡分析[J]. 中国电机工程学报, 2006, 26(14): 24-30. Li Tianyun, Gao Lei, Zhao Yan.Analysis of low frequency oscillations using HHT method[J]. Proceedings of the CSEE, 2006, 26(14): 24-30. [32] 竺炜, 唐颖杰, 周有庆, 等. 基于改进Prony算法的电力系统低频振荡模式识别[J]. 电网技术, 2009, 33(5): 44-47, 53. Zhu Wei, Tang Yingjie, Zhou Youqing, et al.Identification of power system low frequency oscillation mode based on improved prony algorithm[J]. Power System Technology, 2009, 33(5): 44-47, 53. [33] 李施, 丁仁杰. 一种基于信号相关性的低频振荡辨识方法[J]. 电力系统保护与控制, 2018, 46(11): 46-54. Li Shi, Ding Renjie.An identification method for low-frequency oscillation based on signal correlation[J]. Power System Protection and Control, 2018, 46(11): 46-54. [34] 刘君, 肖辉, 曾林俊, 等. 基于RSSD和ICA算法的低频振荡模态参数辨识[J]. 电工技术学报, 2018, 33(21): 5051-5058. Liu Jun, Xiao Hui, Zeng Linjun, et al.Parameter identification of low frequency oscillation based on RSSD and ICA algorithm[J]. Transactions of China Electrotechnical Society, 2018, 33(21): 5051-5058. [35] Shen Yaqi, Ma Jing, Wang Letian.Study on DFIG dissipation energy model and low-frequency oscillation mechanism considering the effect of PLL[J]. IEEE Transactions on Power Electronics, 2020, 35(4): 3348-3364. [36] Sun Zhenglong, Cai Guowei, Yang Deyou, et al.A method for the evaluation of generator damping during low-frequency oscillations[J]. IEEE Transactions on Power Systems, 2019, 34(1): 109-119. [37] 孙正龙, 王嘉琛, 潘超, 等. 基于支路模式振荡能量的低频振荡区域定位方法[J]. 中国电机工程学报, 2023, 43(17): 6589-6602. Sun Zhenglong, Wang Jiachen, Pan Chao, et al.Low-frequency oscillation area location method based on branch mode oscillation energy[J]. Proceedings of the CSEE, 2023, 43(17): 6589-6602. [38] 姜涛, 高浛, 李筱静, 等. 基于小波耗散能量谱的电力系统强迫振荡源定位[J]. 电工技术学报, 2023, 38(7): 1737-1750. Jiang Tao, Gao Han, Li Xiaojing, et al.Forced oscillation source location in power system using wavelet dissipation energy spectrum[J]. Transactions of China Electrotechnical Society, 2023, 38(7): 1737-1750. [39] Jing C, McCalley J D, Kommareddy M. An energy approach to analysis of interarea oscillations in power systems[J]. IEEE Transactions on Power Systems, 1996, 11(2): 734-740. [40] Messina A R, Ochoa M, Barocio E.Use of energy and power concepts in the analysis of the inter-area mode phenomenon[J]. Electric Power Systems Research, 2001, 59(2): 111-119. [41] Yu Yiping, Grijalva S, Thomas J J, et al.Oscillation energy analysis of inter-area low-frequency oscillations in power systems[J]. IEEE Transactions on Power Systems, 2016, 31(2): 1195-1203. [42] 孙正龙, 姜权峰, 王嘉琛, 等. 含风电电力系统机电振荡局部阻尼评估方法[J]. 高电压技术, 2021, 47(10): 3452-3466. Sun Zhenglong, Jiang Quanfeng, Wang Jiachen, et al.Evaluation method of local damping of electrome-chanical oscillation of power systems containing wind turbines[J]. High Voltage Engineering, 2021, 47(10): 3452-3466. [43] Board I S.IEEE recommended practice for excitation system models for power system stability studies[J]. 1992. [44] Zheng Z, Xu Y, Mili L, et al.Observability analysis of a power system stochastic dynamic model using a derivative-free approach[J]. IEEE Transactions on Power Systems, 2021, 36(6): 5834-5845. |
|
|
|