|
|
Sub/Super Synchronous Oscillation Analysis of Grid-Connected Converter in Low Inertia AC System |
Hu Guang1, Zhuang Kehao1, Gao Huisheng1, Xin Huanhai1, Wang Haijiao2, Zhang Yajun3 |
1. College of Electrical Engineering Zhejiang University Hangzhou 310027 China; 2. China Electric Power Research Institute Beijing 100192 China; 3. Electric Power Research Institute State Grid Shanghai Municipal Electric Power Company Shanghai 200437 China |
|
|
Abstract With the widespread integration of renewable energy sources, the power system is transitioning into a weak AC system characterized by low inertia and a reduced short-circuit ratio. Compared to conventional power systems, the interaction between sources and grids becomes more intricate in weak AC systems, resulting in complex dynamic behaviors. The challenge of oscillation instability in grid-connected inverters is accentuated in low-inertia power systems. In such systems, grid-following inverters may interact with the dynamics of synchronous machine rotors, posing new challenges for stability analysis. Relying solely on the dynamics and short-circuit ratio of grid-following devices is insufficient to assess the strength of the AC system. This paper addresses the small-signal oscillation instability in the sub-synchronous frequency range. The impact of the system's generalized short-circuit ratio and inertia on the small-disturbance synchronous stability of grid-following inverters are analyzed. The proposed stability margin quantification method is designed for grid-connected inverters in low-inertia multi-machine systems with low computational complexity and clear physical significance. This paper initially establishes a closed-loop model for the hybrid system of synchronous machines and inverters. The dynamic coupling of the two types of devices is separated by mathematically transforming the closed-loop model. A unit interaction factor matrix (UIFM) is generated, including the dynamics of synchronous machines and the interconnected network of the two types of devices. This matrix qualitatively describes the interaction between the dynamics of synchronous machines and inverters in low-inertia systems, providing a model foundation for stability analysis. The matrix perturbation theory is employed for the closed-loop model, constructing an isomorphic system equivalent to the original system's stability. Modal decoupling is then applied to break down the constructed equivalent isomorphic system into multiple subsystems. The small-signal circuit model of the dominant subsystem is provided. Key factors affecting the stability of the original complex system are extracted, concretizing the interaction of bottom-layer components in the subsystem. Since the minimal subsystem remains a two-dimensional multiple-input, multiple-output (MIMO) system, this paper selects a phase-dominant loop suitable for analyzing small-disturbance synchronous stability problems. The result in a single-input, single-output (SISO) system is equivalent to the stability of the minimal subsystem. The stability of this system is analyzed using the Nyquist criterion, and stability margin indicators are established. A two-dimensional stable operating region calculation method, considering both system inertia and short-circuit ratio, is provided. Finally, using the Matlab/Simulink platform, the effectiveness of the proposed analysis method is validated using a two-area, four-machine system and a 10-machine 39-bus system.
|
Received: 01 September 2023
|
|
|
|
|
[1] 袁小明, 张美清, 迟永宁, 等. 电力电子化电力系统动态问题的基本挑战和技术路线[J]. 中国电机工程学报, 2022, 42(5): 1904-1917. Yuan Xiaoming, Zhang Meiqing, Chi Yongning, et al.Basic challenges of and technical roadmap to power- electronized power system dynamics issues[J]. Proceedings of the CSEE, 2022, 42(5): 1904-1917. [2] Hatziargyriou N, Milanović J, Rahmann C, et al.Stability definitions and characterization of dynamic behavior in systems with high penetration of power electronic interfaced technologies[R]. New York, USA: Institute of Electrical and Electronics Engineers, 2020. [3] Peng Qiao, Jiang Qin, Yang Yongheng, et al.On the stability of power electronics-dominated systems: challenges and potential solutions[J]. IEEE Transa- ctions on Industry Applications, 2019, 55(6): 7657-7670. [4] 邵冰冰, 赵峥, 肖琪, 等. 多直驱风机经柔直并网系统相近次同步振荡模式参与因子的弱鲁棒性分析[J]. 电工技术学报, 2023, 38(3): 754-769. Shao Bingbing, Zhao Zheng, Xiao Qi, et al.Weak robustness analysis of close subsynchronous oscillation modes' participation factors in multiple direct-drive wind turbines with the VSC-HVDC system[J]. Transactions of China Electrotechnical Society, 2023, 38(3): 754-769. [5] 周瑀涵, 辛焕海, 鞠平. 基于广义短路比的多馈入系统强度量化原理与方法: 回顾、探讨与展望[J]. 中国电机工程学报, 2023, 43(10): 3794-3811. Zhou Yuhan, Xin Huanhai, Ju Ping.System strength quantification principle and method of multi-infeed systems based on generalized short-circuit ratio: reviews, discussions and outlooks[J]. Proceedings of the CSEE, 2023, 43(10): 3794-3811. [6] 于琳, 孙华东, 赵兵, 等. 新能源并网系统短路比指标分析及临界短路比计算方法[J]. 中国电机工程学报, 2022, 42(3): 919-929. Yu Lin, Sun Huadong, Zhao Bing, et al.Short circuit ratio index analysis and critical short circuit ratio calculation of renewable energy grid-connected system[J]. Proceedings of the CSEE, 2022, 42(3): 919-929. [7] 郭剑波. 构建新型电力系统是实现能源转型、达成“双碳”目标的有效途径[N]. 国家电网报, 2021- 09-07(5). [8] 齐磊, 赵巍, 孙孝峰, 等. 低调频容量高比例新能源主导局部电网低频失稳分析[J]. 电力系统自动化, 2022, 46(12): 174-183. Qi Lei, Zhao Wei, Sun Xiaofeng, et al.Analysis on low-frequency instability of local power grid with low-frequency regulation capacity dominated by high proportion of renewable energy[J]. Automation of Electric Power Systems, 2022, 46(12): 174-183. [9] 辛焕海, 董炜, 袁小明, 等. 电力电子多馈入电力系统的广义短路比[J]. 中国电机工程学报, 2016, 36(22): 6013-6027. Xin Huanhai, Dong Wei, Yuan Xiaoming, et al.Generalized short circuit ratio for multi power electronic based devices infeed to power systems[J]. Proceedings of the CSEE, 2016, 36(22): 6013-6027. [10] 辛焕海, 甘德强, 鞠平. 多馈入电力系统广义短路比: 多样化新能源场景[J]. 中国电机工程学报, 2020, 40(17): 5516-5527. Xin Huanhai, Gan Deqiang, Ju Ping.Generalized short circuit ratio of power systems with multiple power electronic devices: analysis for various renewable power generations[J]. Proceedings of the CSEE, 2020, 40(17): 5516-5527. [11] 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9): 171-191. Zhuo Zhenyu, Zhang Ning, Xie Xiaorong, et al.Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(9): 171-191. [12] 马富艺龙, 辛焕海, 刘晨曦, 等. 新能源基地柔性直流送出系统小扰动电压支撑强度评估[J]. 电工技术学报, 2023, 38(21): 5758-5770, 5938. Ma Fuyilong, Xin Huanhai, Liu Chenxi, et al.Small-disturbance system voltage support strength assessment method for renewables VSC-HVDC delivery system[J]. Transactions of China Electro- technical Society, 2023, 38(21): 5758-5770, 5938. [13] 辛焕海, 李子恒, 董炜, 等. 三相变流器并网系统的广义阻抗及稳定判据[J]. 中国电机工程学报, 2017, 37(5): 1277-1293. Xin Huanhai, Li Ziheng, Dong Wei, et al.Generalized-impedance and stability criterion for grid-connected converters[J]. Proceedings of the CSEE, 2017, 37(5): 1277-1293. [14] Pulgar-Painemal H, Wang Yajun, Silva-Saravia H.On inertia distribution, inter-area oscillations and location of electronically-interfaced resources[J]. IEEE Transactions on Power Systems, 2018, 33(1): 995-1003. [15] Dong Dong, Wen Bo, Boroyevich D, et al.Analysis of phase-locked loop low-frequency stability in three- phase grid-connected power converters considering impedance interactions[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1): 310-321. [16] Ding Lizhi, Lu Xiaonan, Tan Jin.Small-signal stability analysis of low-inertia power grids with inverter-based resources and synchronous con- densers[C]//2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), New Orleans, LA, USA, 2022: 1-5. [17] Ding Lizhi, Lu Xiaonan, Tan Jin.Comparative small-signal stability analysis of grid-forming and grid-following inverters in low-inertia power systems[C]//IECON 2021-47th Annual Conference of the IEEE Industrial Electronics Society, Toronto, ON, Canada, 2021: 1-6. [18] 徐李清, 郭春义, 杨硕. 联接低惯量交流系统的MMC与发电机之间的低频交互振荡模式研究[J]. 中国电机工程学报, 2023, 43(9): 3402-3415. Xu Liqing, Guo Chunyi, Yang Shuo.Research on low frequency interactive oscillation mode between generator and MMC connected to low inertia AC system[J]. Proceedings of the CSEE, 2023, 43(9): 3402-3415. [19] Markovic U, Stanojev O, Aristidou P, et al.Understanding small-signal stability of low-inertia systems[J]. IEEE Transactions on Power Systems, 2021, 36(5): 3997-4017. [20] Gu Yunjie, Li Yitong, Zhu Yue, et al.Impedance- based whole-system modeling for a composite grid via embedding of frame dynamics[J]. IEEE Transactions on Power Systems, 2021, 36(1): 336-345. [21] 庄可好, 辛焕海, 高晖胜, 等. 双轴励磁电流源同步机视角下跟网/构网设备建模及其互联系统同步稳定性分析[J]. 中国电机工程学报, 2023, 43(20): 7759-7773. Zhuang Kehao, Xin Huanhai, Gao Huisheng, et al.Modeling of grid-forming and grid-following devices from the perspective of dual excitation current sources synchronous generator and synchronous stability analysis of interconnected systems[J]. Proceedings of the CSEE, 2023, 43(20): 7759-7773. [22] 花赟玥, 杨超然, 何国庆, 等. 考虑小干扰稳定和频率稳定的虚拟惯量配置分析[J]. 清华大学学报(自然科学版), 2021, 61(5): 437-445. Hua Yunyue, Yang Chaoran, He Guoqing, et al.Virtual inertia configuration analysis considering small-signal stability and frequency stability[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(5): 437-445. [23] 陈国平, 李明节, 董昱, 等. 构建新型电力系统仿真体系研究[J]. 中国电机工程学报, 2023, 43(17): 6535-6551. Chen Guoping, Li Mingjie, Dong Yu, et al.Research on the simulation technology architecture for the new-type power system[J]. Proceedings of the CSEE, 2023, 43(17): 6535-6551. [24] Du Wenjuan, Dong Wenkai, Wang Haifeng.A method of reduced-order modal computation for planning grid connection of a large-scale wind farm[J]. IEEE Transactions on Sustainable Energy, 2020, 11(3): 1185-1198. [25] Yang Chaoran, Huang Linbin, Xin Huanhai, et al.Placing grid-forming converters to enhance small signal stability of PLL-integrated power systems[J]. IEEE Transactions on Power Systems, 2021, 36(4): 3563-3573. [26] Tu Jing, Zhou Ming, Cui Hantao, et al.An equivalent aggregated model of large-scale flexible loads for load scheduling[J]. IEEE Access, 2019, 7: 143431-143444. [27] Skogestad S, Postelethwaite I.Multivariable feedback control[M]. New York: Wiley Publishing, 1996. [28] 袁辉, 辛焕海, 王冠中, 等. 含SVG的新能源多馈入系统振荡分析和广义短路比计算[J]. 电力系统自动化, 2021, 45(14): 38-46. Yuan Hui, Xin Huanhai, Wang Guanzhong, et al.Analysis on oscillation of multi-infeed system with renewable energy and static var generator and calculation of its generalized short-circuit ratio[J]. Automation of Electric Power Systems, 2021, 45(14): 38-46. [29] Gao Huisheng, Wang Guanzhong, Li Zhiyi, et al.Assessing interaction strength between synchronous generator and LCC-HVDC in AC/DC systems[C]// 2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada, 2020: 1-5. [30] Stewart G W, Sun Jiguang.Matrix perturbation theory[M]. Boston: Academic Press, 1990. [31] 高晖胜. 新能源电力系统模态频率: 定义、分析与控制[D]. 杭州: 浙江大学, 2022. Gao Huisheng.Modal frequency in renewable- integrated power system: definition, analysis and control[D]. Hangzhou: Zhejiang University, 2022. [32] 宫泽旭, 艾力西尔·亚尔买买提, 辛焕海, 等. 新能源电力系统并网设备小扰动稳定分析(一): 机理模型与稳定判据适用性[J]. 中国电机工程学报, 2022, 42(12): 4405-4419. Gong Zexu, Yaermaimaiti Ailixier, Xin Huanhai, et al.Small signal stability analysis of equipment in renewable energy power system (part I): mechanism model and adaptation of stability criterion[J]. Proceedings of the CSEE, 2022, 42(12): 4405-4419. [33] 高本锋, 王义, 范辉, 等. 基于阻尼路径的新能源经LCC-HVDC送出系统次同步交互作用分析方法[J]. 电工技术学报, 2023, 38(20): 5572-5589. Gao Benfeng, Wang Yi, Fan Hui, et al.A sub- synchronous interaction analysis method of renewable energy generations integrated with LCC-HVDC system based on damping path[J]. Transactions of China Electrotechnical Society, 2023, 38(20): 5572-5589. |
|
|
|