[1] 李晖, 刘栋, 姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报, 2021, 41(18): 6245-6259.
Li Hui, Liu Dong, Yao Danyang.Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(18): 6245-6259.
[2] 任大伟, 侯金鸣, 肖晋宇, 等. 能源电力清洁化转型中的储能关键技术探讨[J]. 高电压技术, 2021, 47(8): 2751-2759.
Ren Dawei, Hou Jinming, Xiao Jinyu, et al. Exploration of key technologies for energy storage in the cleansing transformation of energy and power[J]. High Voltage Engineering, 2021, 47(8): 2751-2759.
[3] 姜云鹏, 任洲洋, 李秋燕, 等. 考虑多灵活性资源协调调度的配电网新能源消纳策略[J]. 电工技术学报, 2022, 37(7): 1820-1835.
Jiang Yunpeng, Ren Zhouyang, Li Qiuyan, et al. An accommodation strategy for renewable energy in distribution network considering coordinated dispatching of multi-flexible resources[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1820-1835.
[4] 赵志鹏, 于志辉, 程春田, 等. 水风光综合基地多风险量化及长期多目标协调优化调度方法[J]. 电力系统自动化, 2024, 48(22): 118-130.
Zhao Zhipeng, Yu Zhihui, Cheng Chuntian, et al. Multi-risk quantification and long-term multi-objective coordinative optimal dispatch method for hydro-wind-solar integrated energy base[J]. Automation of Electric Power Systems, 2024, 48(22): 118-130.
[5] 郭怿, 明波, 黄强, 等. 考虑输电功率平稳性的水-风-光-储多能互补日前鲁棒优化调度[J]. 电工技术学报, 2023, 38(9): 2350-2363.
Guo Yi, Ming Bo, Huang Qiang, et al.Day-ahead robust optimal scheduling of hydro-wind-PV-storage complementary system considering the steadiness of power delivery[J]. Transactions of China Electrotechnical Society, 2023, 38(9): 2350-2363.
[5] 郭怿, 明波, 黄强, 等. 考虑输电功率平稳性的水-风-光-储多能互补日前鲁棒优化调度[J]. 电工技术学报, 2023, 38(9): 2350-2363.
Guo Yi, Ming Bo, Huang Qiang, et al.Day-ahead robust optimal scheduling of hydro-wind-PV-storage complementary system considering the steadiness of power delivery[J]. Transactions of China Electrotechnical Society, 2023, 38(9): 2350-2363.
[6] 王开艳, 罗先觉, 贾嵘, 等. 充分发挥多能互补作用的风蓄水火协调短期优化调度方法[J]. 电网技术, 2020, 44(10): 3631-3641.
Wang Kaiyan, Luo Xianjue, Jia Rong, et al. Short-term coordinated scheduling of wind-pumped-hydro-thermal power system with multi-energy complementarities[J]. Power System Technology, 2020, 44(10): 3631-3641.
[7] 孙惠, 翟海保, 吴鑫. 源网荷储多元协调控制系统的研究及应用[J]. 电工技术学报, 2021, 36(15): 3264-3271.
Sun Hui, Zhai Haibao, Wu Xin. Research and application of multi-energy coordinated control of generation, network, load and storage[J]. Transactions of China Electrotechnical Society, 2021, 36(15): 3264-3271.
[8] 李建林, 郭兆东, 马速良, 等. 新型电力系统下“源网荷储” 架构与评估体系综述[J]. 高电压技术, 2022, 48(11): 4330-4342.
Li Jianlin, Guo Zhaodong, Ma Suliang, et al. Overview of the ‘‘source-grid-load-storage'' architecture and evaluation system under the new power system[J]. High Voltage Engineering, 2022, 48(11): 4330-4342.
[9] 韩丽, 王冲, 于晓娇, 等. 考虑风电爬坡灵活调节的碳捕集电厂低碳经济调度[J]. 电工技术学报, 2024, 39(7): 2033-2045.
Han Li, Wang Chong, Yu Xiaojiao, et al. Low-carbon and economic dispatch considering the carbon capture power plants with flexible adjustment of wind power ramp[J]. Transactions of China Electrotechnical Society, 2024, 39(7): 2033-2045.
[10] 袁文腾, 陈亮, 王春波, 等. 基于氨储能技术的电转氨耦合风-光-火综合能源系统双层优化调度[J]. 中国电机工程学报, 2023, 43(18): 6992-7003.
Yuan Wenteng, Chen Liang, Wang Chunbo, et al. Bi-level optimal scheduling of power-to-ammonia coupling wind-photovoltaic-thermal integrated energy system based on ammonia energy storage technology[J]. Proceedings of the CSEE, 2023, 43(18): 6992-7003.
[11] 李军徽, 张嘉辉, 李翠萍, 等. 参与调峰的储能系统配置方案及经济性分析[J]. 电工技术学报, 2021, 36(19): 4148-4160.
Li Junhui, Zhang Jiahui, Li Cuiping, et al. Configuration scheme and economic analysis of energy storage system participating in grid peak shaving[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 4148-4160.
[12] 谭乔凤, 聂状, 闻昕, 等. 大规模风光接入下梯级水电站调度方式研究[J]. 水力发电学报, 2022, 41(9): 44-55.
Tan Qiaofeng, Nie Zhuang, Wen Xin, et al. Operation modes of cascade hydropower stations considering large-scale integration of wind and photovoltaic power[J]. Journal of Hydroelectric Engineering, 2022, 41(9): 44-55.
[13] Li Huanhuan, Zhang Runfan, Mahmud M A, et al. A novel coordinated optimization strategy for high utilization of renewable energy sources and reduction of coal costs and emissions in hybrid hydro-thermal-wind power systems[J]. Applied Energy, 2022, 320: 119019.
[14] 杨茂, 王达, 王小海, 等. 基于数据物理混合驱动的超短期风电功率预测模型[J]. 高电压技术, 2024, 50(11): 5132-5141.
Yang Mao, Wang Da, Wang Xiaohai, et al. Ultra-short term wind power prediction method based on data physics hybrid driven model[J]. High Voltage Engineering, 2024, 50(11): 5132-5141.
[15] 邹金, 朱继忠, 赖旭, 等. 基于时空自回归移动平均模型的风电出力序列模拟[J]. 电力系统自动化, 2019, 43(3): 101-107.
Zou Jin, Zhu Jizhong, Lai Xu, et al. Simulation of wind power output series based on space-time auto-regressive moving average model[J]. Automation of Electric Power Systems, 2019, 43(3): 101-107.
[16] 彭曙蓉, 陈慧霞, 孙万通, 等. 基于改进LSTM的光伏发电功率预测方法研究[J]. 太阳能学报, 2024, 45(11): 296-302.
Peng Shurong, Chen Huixia, Sun Wantong, et al. Research on photovoitaic power prediction method based on improved LSTM[J]. Acta Energiae Solaris Sinica, 2024, 45(11): 296-302.
[17] Harbola S, Coors V. One dimensional convolutional neural network architectures for wind prediction[J]. Energy Conversion and Management, 2019, 195: 70-75.
[18] 钟吴君, 李培强, 涂春鸣. 基于EEMD-CBAM-Bi LSTM的牵引负荷超短期预测[J]. 电工技术学报, 2024, 39(21): 6850-6864.
Zhong Wujun, Li Peiqiang, Tu Chunming. Traction load ultra-short-term forecasting framework based on EEMD-CBAM-BiLSTM[J]. Transactions of China Electrotechnical Society, 2024, 39(21): 6850-6864.
[19] 张孝顺, 李锦诚, 郭正勋. 大模型辅助的大型海上风电场集电系统拓扑优化[J]. 高电压技术, 2024, 50(7): 2894-2905.
Zhang Xiaoshun, Li Jincheng, Guo Zhengxun. Topology optimization of large-scale offshore wind farm collector systems based on large language models[J]. High Voltage Engineering, 2024, 50(7): 2894-2905.
[20] 曹祎, 张莉, 郭静, 等. 基于大语言模型的低碳电力市场发展应用前景[J]. 智慧电力, 2024, 52(2): 8-16.
Cao Yi, Zhang Li, Guo Jing, et al. Prospects for development of low-carbon electricity markets based on large language models[J]. Smart Power, 2024, 52(2): 8-16.
[21] 李莉, 时榕良, 郭旭, 等. 融合大模型与图神经网络的电力设备缺陷诊断[J]. 计算机科学与探索, 2024, 18(10): 2643-2655.
Li Li, Shi Rongliang, Guo Xu, et al. Diagnosis of power system defects by large language models and graph neural networks[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(10): 2643-2655.
[22] Bonadia R S, Trindade F C L, Freitas W, et al. On the potential of ChatGPT to generate distribution systems for load flow studies using OpenDSS[J]. IEEE Transactions on Power Systems, 2023, 38(6): 5965-5968.
[23] Gao Mingyang, Zhou Suyang, Gu Wei, et al. LFPLM: a general and flexible load forecasting framework based on pre-trained language model[J]. arXiv preprint arXiv:2406. 11336, 2024.
[24] Hu E, Shen Yelong, Wallis P, et al.Lora: low-rank adaptation of large language models[J]. arXiv preprint arXiv:2106.09685, 2021.
[25] 陈帝伊, 张猛, 刘泳, 等. 考虑避振条件的水风光互补发电系统运行经济性评估[J]. 水利学报, 2024, 55(4): 403-415.
Chen Diyi, Zhang Meng, Liu Yong, et al.Operational economic evaluation of hydro-wind-photovoltaic power generation system considering the vibration avoidance strategy[J]. Journal of Hydraulic Engineering, 2024, 55(4): 403-415.
[26] Wang Kaiyan, Zhu Hengtao, Dang Jian, et al. Short-term optimal scheduling of wind-photovoltaic-hydropower-thermal-pumped hydro storage coupled system based on a novel multi-objective priority stratification method[J]. Energy, 2024, 309: 133190.
[27] Wu Xingyu, Wu Shenghao, Wu Jibin, et al. Evolutionary computation in the era of large language model: survey and roadmap[J]. IEEE Transactions on Evolutionary Computation, 2025, 29(2): 534-554.
[28] 董俊, 束洪春, 刘瑞, 等. 大语言模型赋能场景生成和双层优化的多农业园区供电-灌溉-蓄水耦合运行[J]. 高电压技术, 2024, 50(7): 2906-2917.
Dong Jun, Shu Hongchun, Liu Rui, et al. Large language models empowering scenario generation and dual-layer optimization for coupled operations of power supply, irrigation, and water storage in multiple agricultural parks[J]. High Voltage Engineering, 2024, 50(7): 2906-2917.
[29] 王开艳, 杜浩东, 贾嵘, 等. 基于相似日聚类和QR-CNN-BiLSTM模型的光伏功率短期区间概率预测[J]. 高电压技术, 2022, 48(11): 4372-4388.
Wang Kaiyan, Du Haodong, Jia Rong, et al. Short-term interval probability prediction of photovoltaic power based on similar daily clustering and QR-CNN-BiLSTM model[J]. High Voltage Engineering, 2022, 48(11): 4372-4388.
[30] Li Xudong, Yang Weijia, Zhao Zhigao, et al. Advantage of priority regulation of pumped storage for carbon-emission-oriented co-scheduling of hybrid energy system[J]. Journal of Energy Storage, 2023, 58: 106400. |