[1] 何晨可, 朱继忠, 刘云, 等. 计及碳减排的电动汽车充换储一体站与主动配电网协调规划[J]. 电工技术学报, 2022, 37(1): 92-111.
He Chenke, Zhu Jizhong, Liu Yun, et al.Coordinated planning of electric vehicle charging-swapping-storage integrated station and active distribution network considering carbon reduction[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 92-111.
[2] Pascual J, Arcos-Aviles D, Ursúa A, et al.Energy management for an electro-thermal renewable-based residential microgrid with energy balance forecasting and demand side management[J]. Applied Energy, 2021, 295: 117062.
[3] 周玮, 蓝嘉豪, 麦瑞坤, 等. 无线充电电动汽车V2G模式下光储直流微电网能量管理策略[J]. 电工技术学报, 2022, 37(1): 82-91.
Zhou Wei, Lan Jiahao, Mai Ruikun, et al.Research on power management strategy of DC microgrid with photovoltaic, energy storage and EV-wireless power transfer in V2G mode[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 82-91.
[4] 随权, 魏繁荣, 林湘宁, 等. 一种基于可控负荷效率控制的孤岛微网新型调度策略[J]. 中国电机工程学报, 2019, 39(24): 7168-7178, 7490.
Sui Quan, Wei Fanrong, Lin Xiangning, et al.A novel dispatching strategy for isolated microgrid based on controllable load efficiency control[J]. Proceedings of the CSEE, 2019, 39(24): 7168-7178, 7490.
[5] 李长云,徐敏灵,蔡淑媛.计及电动汽车违约不确定性的微电网两段式优化调度策略[J/OL].电工技术学报:1-12[2022-10-28].DOI:10.19595/j.cnki.1000-6753.tces.212010.
Li Changyun, Xu Minling, Cai Shuyuan.Two stage optimal dispatching strategy of micro grid taking into account the uncertainty of electric vehicle default[J/OL]. Journal of Electrotechnical Technology: 1-12[2022-10-28]. DOI: 10.19595/j.cnki.1000-6753.tces.212010.
[6] 刘迎澍, 陈曦, 李斌, 等. 多微网系统关键技术综述[J]. 电网技术, 2020, 44(10): 3804-3820.
Liu Yingshu, Chen Xi, Li Bin, et al.State of art of the key technologies of multiple microgrids system[J]. Power System Technology, 2020, 44(10): 3804-3820.
[7] Bevrani H, Feizi M R, Ataee S.Robust frequency control in an islanded microgrid: H∞ and μ-synthesis approaches[J]. IEEE Transactions on Smart Grid, 2016, 7(2): 706-717.
[8] 张释中, 裴玮, 杨艳红, 等. 基于柔性直流互联的多微网集成聚合运行优化及分析[J]. 电工技术学报, 2019, 34(5): 1025-1037.
Zhang Shizhong, Pei Wei, Yang Yanhong, et al.Optimization and analysis of multi-microgrids integration and aggregation operation based on flexible DC interconnection[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 1025-1037.
[9] Khokhar B, Dahiya S, Singh Parmar K P. Load frequency control of a microgrid employing a 2D Sine Logistic map based chaotic sine cosine algorithm[J]. Applied Soft Computing, 2021, 109: 107564.
[10] Esmaeili Karkevandi A, Daryani M J, Usta O.ANFIS-based intelligent PI controller for secondary frequency and voltage control of microgrid[C]//2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Sarajevo, Bosnia and Herzegovina, 2018: 1-6.
[11] 崔明勇, 曹朋, 朱大伟, 等. 基于FOPI+FOPD控制器的单区域电力系统频率控制及电压调节[J]. 燕山大学学报, 2022, 46(2): 157-165, 176.
Cui Mingyong, Cao Peng, Zhu Dawei, et al.Frequency control and voltage regulation of single area power system based on FOPI+FOPD controller[J]. Journal of Yanshan University, 2022, 46(2): 157-165, 176.
[12] Jan M U, Xin Ai, Abdelbaky M A, et al.Adaptive and fuzzy PI controllers design for frequency regulation of isolated microgrid integrated with electric vehicles[J]. IEEE Access, 2020, 8: 87621-87632.
[13] Mohammadzadeh A, Kayacan E.A novel fractional-order type-2 fuzzy control method for online frequency regulation in ac microgrid[J]. Engineering Applications of Artificial Intelligence, 2020, 90: 103483.
[14] Mahdi M M, Ahmad A Z.Load frequency control in microgrid using fuzzy logic table control[C]//2017 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Cadiz, Spain, 2017: 318-323.
[15] 项雷军, 陈昊, 郭新华, 等. 基于模糊分数阶PID的含电动汽车的多能源微电网二次频率控制[J]. 电力自动化设备, 2021, 41(11): 74-80.
Xiang Leijun, Chen Hao, Guo Xinhua, et al.Secondary frequency control of multi-energy microgrid with electric vehicles based on fuzzy fractional-order PID[J]. Electric Power Automation Equipment, 2021, 41(11): 74-80.
[16] Yang Jun, Zeng Zhili, Tang Yufei, et al.Load frequency control in isolated micro-grids with electrical vehicles based on multivariable generalized predictive theory[J]. Energies, 2015, 8(3): 2145-2164.
[17] Fan Peixiao, Ke Song, Kamel S, et al.A frequency and voltage coordinated control strategy of island microgrid including electric vehicles[J]. Electronics, 2021, 11(1): 17.
[18] Mounce R, Nelson J D.On the potential for one-way electric vehicle car-sharing in future mobility systems[J]. Transportation Research Part A: Policy and Practice, 2019, 120: 17-30.
[19] Chen Lei, Lu Xiaomin, Min Yong, et al.Optimization of governor parameters to prevent frequency oscillations in power systems[J]. IEEE Transactions on Power Systems, 2018, 33(4): 4466-4474.
[20] 王敏, 李想, 张程飞. 基于多重逆变器复杂控制策略的微电网运行控制[J]. 现代电力, 2016, 33(5): 24-29.
Wang Min, Li Xiang, Zhang Chengfei.The operation and control of microgrid based on the complex control strategy of multiple inverters[J]. Modern Electric Power, 2016, 33(5): 24-29.
[21] Hu Jianchen, Ding Baocang.Output feedback robust MPC for linear systems with norm-bounded model uncertainty and disturbance[J]. Automatica, 2019, 108: 108489.
[22] Rao Yingqing, Yang Jun, Xiao Jinxing, et al.A frequency control strategy for multimicrogrids with V2G based on the improved robust model predictive control[J]. Energy, 2021, 222: 119963.
[23] Khokhar B, Singh Parmar K P. A novel adaptive intelligent MPC scheme for frequency stabilization of a microgrid considering SoC control of EVs[J]. Applied Energy, 2022, 309: 118423.
[24] 刘全, 翟建伟, 章宗长, 等. 深度强化学习综述[J]. 计算机学报, 2018, 41(1): 1-27.
Liu Quan, Zhai Jianwei, Zhang Zongchang, et al.A survey on deep reinforcement learning[J]. Chinese Journal of Computers, 2018, 41(1): 1-27.
[25] 余涛, 梁海华, 周斌. 基于R(λ)学习的孤岛微电网智能发电控制[J]. 电力系统保护与控制, 2012, 40(13): 7-13.
Yu Tao, Liang Haihua, Zhou Bin.Smart power generation control for microgrids islanded operation based on R (λ) learning[J]. Power System Protection and Control, 2012, 40(13): 7-13.
[26] 范培潇, 杨军, 肖金星, 等. 基于深度Q学习的含电动汽车孤岛微电网负荷频率控制策略[J]. 电力建设, 2022, 43(4): 91-99.
Fan Peixiao, Yang Jun, Xiao Jinxing, et al.Load frequency control strategy based on deep Q learning for island microgrid with electric vehicles[J]. Electric Power Construction, 2022, 43(4): 91-99.
[27] 赵星宇, 丁世飞. 深度强化学习研究综述[J]. 计算机科学, 2018, 45(7): 1-6.
Zhao Xingyu, Ding Shifei.Research on deep reinforcement learning[J]. Computer Science, 2018, 45(7): 1-6.
[28] 范培潇, 柯松, 杨军, 等. 基于改进多智能体深度确定性策略梯度的多微网负荷频率协同控制策略[J]. 电网技术, 2022, 46(9): 3504-3515.
Fan Peixiao, Ke Song, Yang Jun, et al.Load frequency coordinated control strategy of multi-microgrid based on improved MA-DDPG[J]. Power System Technology, 2022, 46(9): 3504-3515.
[29] Fan Peixiao, Ke Song, Yang Jun, et al.A load frequency coordinated control strategy for multimicrogrids with V2G based on improved MA-DDPG[J]. International Journal of Electrical Power & Energy Systems, 2023, 146: 108765.
[30] 李捷, 余涛, 潘振宁. 基于强化学习的增量配电网实时随机调度方法[J]. 电网技术, 2020, 44(9): 3321-3332.
Li Jie, Yu Tao, Pan Zhenning.Real-time stochastic dispatch method for incremental distribution network based on reinforcement learning[J]. Power System Technology, 2020, 44(9): 3321-3332. |