[1] Zhou Chengke, Yi Huajie, Dong Xiang.Review of recent research towards power cable life cycle management[J]. High Voltage, 2017, 2(3): 179-187.
[2] 陈杰, 吴世林, 胡丽斌, 等. 退役高压电缆附件绝缘状态及理化性能分析[J]. 电工技术学报, 2021, 36(12): 2650-2658.
Chen Jie, Wu Shilin, Hu Libin, et al.Analysis of Insulation State and Physicochemical Property of Retired High-Voltage Cable Accessories[J]. Transactions of China Electrotechnical Society, 2021, 36(12): 2650-2658.
[3] Tang Zeyang, Zhou Chengke, Jiang Wei.Analysis of significant factors on cable failure using the Cox proportional hazard model[J]. IEEE Transactions on Power Delivery, 2014, 29(2): 951-957.
[4] 唐进, 张姝, 林圣, 等. 计及金属护层结构的电缆单端故障测距方法[J]. 中国电机工程学报, 2016, 36(6): 1748-1756.
Tang Jin, Zhang Shu, Lin Sheng, et al.Single-terminal Fault Locating Method of Cables Considering the Metal Sheath Structure[J]. Proceedings of the CSEE, 2016, 36(6): 1748-175.
[5] 严有祥, 朱婷, 张那明, 等. 交直流电缆共沟敷设电磁环境影响因素[J]. 电工技术学报, 2022, 37(06): 1329-1337.
Yan Youxiang, Zhu Ting, Zhang Naming, et al.The Influence Factors of Electromagnetic Environment in the Tunnels with DC Cables and AC Cables[J]. Transactions of China Electrotechnical Society, 2022, 37(06): 1329-1337.
[6] Li Shengtao, Li Jianying.Condition monitoring and diagnosis of power equipment: review and prospective[J]. High Voltage, 2017, 2(2):82-91.
[7] 单秉亮, 李舒宁, 杨霄, 等. XLPE配电电缆缺陷诊断与定位技术面临的关键问题[J]. 电工技术学报, 2021, 36(22): 4809-4819.
Shan Bingliang, Li Shuning, Yang Xiao, et al.Key Problems Faced by Defect Diagnosis and Location Technologies for XLPE Distribution Cables[J]. Transactions of China Electrotechnical Society, 2021, 36(22): 4809-4819.
[8] 贾科, 施志明, 张旸, 等. 基于电缆早期故障区段定位的柔性直流配电系统保护方法[J/OL]. 电力系统自动化: 1-15.
Jian Jiake, Shi Zhiming, Zhang Yang, et al.Incipient Fault Section Location Based Protection for a Flexible DC Distribution System[J/OL]. Automation of Electric Power Systems: 1-15.
[9] 王昊月, 李成榕, 王伟, 等. 高压频域介电谱诊断XLPE电缆局部绝缘老化缺陷的研究[J]. 电工技术学报, 2022, 37(06): 1542-1553.
Wang Haoyue, Li Chengrong, Wang Wei, et al.Local Aging Diagnosis of XLPE Cables Using High Voltage Frequency Domain Dielectric Spectroscopy[J]. Transactions of China Electrotechnical Society, 2022, 37(06): 1542-1553.
[10] Marzinotto M, Mazzanti G.The feasibility of cable sheath fault detection by monitoring sheath-to-ground currents at the ends of cross-bonding sections[J]. IEEE Transactions on Industry Application, 2015, 51(6): 5376-5384.
[11] Dong Xiang, Yang Yang, Zhou Chengke, et al.On-line monitoring and diagnosis of HV cable faults by sheath system currents[J]. IEEE Transactions on Power Delivery, 2017, 32(5): 2281-2290.
[12] Shokry A, Khamlichi A, Garnacho F, et al.Detection and localization of defects in cable sheath of cross bonding configuration by sheath currents[J]. IEEE Transactions on Power Delivery, 2019, 34(4): 1401-1411.
[13] Li Zhonglei, Du Boxue, Wang Li.Evaluation of high-voltage AC cable grounding systems based on the real-time monitoring and theoretical calculation of grounding currents[J]. High Voltage, 2018, 3(1): 38-43.
[14] Wang Yilin, Ye Hao, Zhang Tongshuai, et al.A data mining method based on unsupervised learning and spatiotemporal analysis for sheath current monitoring[J]. Neurocomputing, 2019, 352(4): 54-63.
[15] 刘福源, 王航, 夏湛然, 等. 交叉互联高压电缆护层保护器故障对同回路两端护层电流相量差的影响[J/OL]. 高电压技术: 1-11.
Liu Fuyuan, Wang Hang, Xia Zhanran, et al.Influence of the Sheath Voltage Limiter Fault on the Sheath Current Phasor Difference Between the Two Ends in the Same Sheath Loop in Cross-bonded HV Cables[J/OL]. High Voltage Engineering: 1-11.
[16] Yang Yang, D M Hepburn, Zhou Chengke, et al. On-line monitoring of relative dielectric losses in cross-bonded cables using sheath currents[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(5): 2677-2685.
[17] Li Mingzhen, Zhou Chengke, Zhou Wenjun, et al.A novel fault location method for a cross-bonded HV cable system based on sheath current monitoring[J]. Sensors, 2018, 18(10): 3356-3375.
[18] Li Mingzhen, Liu Jianming, Zhu Tao, et al.A novel traveling-wave-based method improved by unsupervised learning for fault location of power cables via sheath current monitoring[J]. Sensors, 2019, 19(9): 2083-2107.
[19] 徐星, 陈向荣, 杜振东, 等. 基于非解耦节点导纳矩阵的随桥电缆接地方式研究[J]. 电工技术学报, 2021, 36(17): 3664-3674.
Xu Xing, Chen Xiangrong, Du Zhendong, et al.Study on Bridge-Cable Grounding System Based on the Non-decoupling Nodal Admittance Matrix[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3664-3674.
[20] 李根, 王航, 刘海康, 等. 基于逻辑回归的高压电缆交叉互联系统缺陷分类识别方法[J]. 高电压技术, 2021, 47(10): 3674-3683.
Li Gen, Wang Hang, Liu Haikang, et al.Classification and Identification Method of Grounding System Defects in Cross-bonded HV Cables Based on Logistic Regression[J]. High Voltage Engineering, 2021,47(10): 3674-3683.
[21] Shaban M, Salam A, Ang P, et al.Induced sheath voltage in power cables: A review[J]. Renewable & Sustainable Energy Reviews, 2016, 62(1): 1236-1251.
[22] 马燕峰, 霍亚欣, 李鑫, 等. 考虑时滞影响的双馈风电场广域附加阻尼控制器设计[J]. 电工技术学报, 2020, 35(1): 158-166.
Ma Yanfeng, Huo Yaxin, Li Xin, et al.Design of Wide Area Additional Damping Controller for Doubly Fed Wind Farms Considering Time Delays[J]. Transactions of China Electrotechnical Society, 2020,35(1): 158-166.
[23] 薛安成, 张兆阳, 毕天姝. 基于自适应抗差最小二乘的线路正序参数在线辨识方法[J]. 电工技术学报, 2015, 030(008): 202-209.
Xue Ancheng, Zhang Zhaoyang, BI Tianshu.Online Identification of Transmission Line Positive-Sequence Parameters Based on Adaptive Robust Least Squares[J]. Transactions of China Electrotechnical Society, 2015, 030(008): 202-209.
[24] 谢文超, 赵延明, 方紫微, 等. 带可变遗忘因子递推最小二乘法的超级电容模组等效模型参数辨识方法[J]. 电工技术学报, 2021, 36(05): 996-1005.
Xie Wenchao, Zhao Yanming, Fang Ziwei, et al.Variable Forgetting Factor Recursive Least Squales Based Parameter Identification Method for the Equivalent Circuit Model of the Supercapacitor Cell Module[J]. Transactions of China Electrotechnical Society, 2021, 36(05): 996-1005.
[25] 程鹏, 刘文泉, 陈冲, 等. 面向电气化铁路牵引供电的光伏发电分相电流控制策略[J]. 电力系统自动化, 2022, 46(19): 145-153.
Cheng Peng, Liu Wenquan, Chen Chong, et al.Individual Phase Current Control Strategy of Photovoltaic Power Generation for Traction Power Supply of Electrified Railway[J]. Automation of Electric Power Systems, 2022,46(19): 145-153. |