|
|
Research Overview of Oil-Paper Composite Insulation Modified by Nano Particles for Transformer |
Liu Daosheng1, Zhou Chunhua1, Ding Jin1, Ye Jing2, Du Boxue3 |
1. School of Electrical Engineering and Automation Jiangxi University of Science and Technology Ganzhou 341000 China; 2. Huaneng Qinmei Ruijin Power Generation Co. Ltd Ganzhou 341000 China; 3. School of Electrical and Information Engineering Tianjin University Tianjin 300072 China |
|
|
Abstract As the main internal insulation of power transformer, the electric performance of oil-paper composite insulation is concerned by power equipment manufacturers and operators. It is of great significance to improve the performance of oil-paper composite insulation, reduce the probability of insulation damage and improve the reliability of transformer insulation. The nanoparticles are often used as additives to improve the electrical properties of insulating materials due to their excellent physical properties, such as large specific surface area, quantum size and macroscopic quantum tunneling effects. Based on them, the recent research achievements of nano-modification of transformer oil-paper composite insulation are summarized. The modification methods of oil-paper composite insulation system for power transformer in recent years are introduced. Then the three kinds of theoretical models to explain the modification mechanism of nanoparticles are introduced. What's more, the charge behaviors inside and on the surface of oil-paper before and after modification are analyzed, as well as the partial discharge and the breakdown characteristics under AC/DC and lightning impulse voltage. Finally, the present research achievements are summarized. Moreover, the development direction of transformer oil-paper insulation nano-modification is prospected. Firstly, the method of nano-modified oil-paper composite insulation for transformer is summarized. One-step and two-step methods are usually used to prepare nano-modified transformer oil. The preparation of nano-modified cellulose paper can be divided into chemical modification and physical modification. Secondly, the three kinds of theoretical models for the modification mechanism are particle surface capture model, spatial polarization potential well model and trap model, respectively. These three kinds of models have their own distinct advantages and certain limitations. However, trap model is more persuasive, which is the most widely used at present. In terms of universality, this method not only can avoid the influence on electron capture of polarization relaxation time in particle surface capture model, but also can make up the limitation of electrons trapped by nanoparticles in the spatial polarization potential well model. Finally, the internal and surface charge behavior, partial discharge and breakdown characteristics of the insulated oil-paper before and after nano modification are launched describing. In terms of the selection of nanoparticles, such as TiO2, Al2O3, SiO2, AlN, ZnO, SiC and graphene are fine choices, and each has its own advantages and disadvantages. It is very important to select appropriate nanoparticle materials according to the needs and ensure their dispersion in the modification process. For the nano-modification technology of transformer oil-paper insulation, the electrical characteristics and breakdown mechanism of composite insulation under the influence of multiple physical fields in the composite environment, such as electric field, temperature field, magnetic field and stress field coupling need to be studied and improved. In addition, in order to supplemented and improve the trap model, the mechanism of the trap energy level and trap density in insulating oil modified by nanoparticles should be further explored in the future. The study of oil-paper insulation life evaluation also needs to be explored under the synergistic effect of multiple factors. In view of the improvement for the electrical performance in the oil-paper insulation system modified by nanoparticles, the following conclusions can be obtained: (1) Due to the addition of nanoparticles, the accumulation of interface/space charge in the oil-paper composite insulation system can be effectively inhibited, and the distribution of electric field can be optimized. The effect is closely related to the type, concentration and size of the nanoparticles. (2) The partial discharge characteristics of transformer oil and insulating pressboard are improved by nano regulation technology. (3) Nano modification technology can effectively improve the breakdown performance of oil-paper insulation system, but the improvement effect is different in various operating conditions such as AC, DC, AC/DC composite, lightning impulse voltage and so on.
|
Received: 22 June 2022
|
|
|
|
|
[1] 贺之渊, 王威儒, 谷怀广, 等. 兼备故障限流及开断功能的直流电网集成化关键设备发展现状及展望[J]. 中国电机工程学报, 2020, 40(11): 3402-3418. He Zhiyuan, Wang Weiru, Gu Huaiguang, et al.Development status and prospect of integrated key equipment of DC power grid with fault current limiting and breaking functions[J]. Proceedings of the CSEE, 2020, 40(11): 3402-3418. [2] 梁志峰, 董昱, 张智刚. 2006—2012年国家电网公司直流输电系统强迫停运统计分析[J]. 电力系统自动化, 2014, 38(6): 1-5. Liang Zhifeng, Dong Yu, Zhang Zhigang.Statistical analysis on forced outages of HVDC transmission systems in state grid corporation of China from 2006 to 2012[J]. Automation of Electric Power Systems, 2014, 38(6): 1-5. [3] 舒印彪, 张文亮. 特高压输电若干关键技术研究[J]. 中国电机工程学报, 2007, 27(31): 1-6. Shu Yinbiao, Zhang Wenliang.Research of key technologies for UHV transmission[J]. Proceedings of the CSEE, 2007, 27(31): 1-6. [4] 何东欣, 张涛, 陈晓光, 等. 脉冲电压下电力电子装备绝缘电荷特性研究综述[J]. 电工技术学报, 2021, 36(22): 4795-4808. He Dongxin, Zhang Tao, Chen Xiaoguang, et al.Research overview on charge characteristics of power electronic equipment insulation under the pulse voltage[J]. Transactions of China Electrotechnical Society, 2021, 36(22): 4795-4808. [5] 郝建, 廖瑞金, Chen G, 等. 油纸绝缘复合电介质的空间/界面电荷特性及其抑制方法综述[J]. 高电压技术, 2019, 45(10): 3192-3206. Hao Jian, Liao Ruijin, Chen G, et al.Review of space/interface charge characteristics and its suppression methods for oil-paper insulation composite dielectrics[J]. High Voltage Engineering, 2019, 45(10): 3192-3206. [6] Choi S U S, Eastman J. Enhancing thermal conductivity of fluids with nanoparticles[C]// ASME International Mechanical Engineering Congress & Exposition, San Francisco, CA, USA, 1995: 1-7. [7] Li Jian, Zhang Zhaotao, Zou Ping, et al.Preparation of a vegetable oil-based nanofluid and investigation of its breakdown and dielectric properties[J]. IEEE Electrical Insulation Magazine, 2012, 28(5): 43-50. [8] Hou Yanpan, Zhang Zicheng, Zhang Jiande, et al.Experimental investigations into the enhanced dielectric breakdown performances of propylene carbonate modified by TiO2 nano-particles[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(5): 2816-2821. [9] Du Boxue, Li Xiaolong, Xiao Meng.High thermal conductivity transformer oil filled with BN nanoparticles[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(2): 851-858. [10] Du Boxue, Li Xiaolong, Li Jin.Thermal conductivity and dielectric characteristics of transformer oil filled with BN and Fe3O4 nanoparticles[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(5): 2530-2536. [11] 司马文霞, 曹雪菲, 杨庆, 等. 冲击电压下3种纳米改性变压器油击穿特性的比较和分析[J]. 高电压技术, 2015, 41(2): 374-381. Sima Wenxia, Cao Xuefei, Yang Qing, et al.Comparison and analysis on the impulse breakdown characteristics of three transformer oil-based nanofluids[J]. High Voltage Engineering, 2015, 41(2): 374-381. [12] Chiesa M, Das S K.Experimental investigation of the dielectric and cooling performance of colloidal suspensions in insulating media[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 335(1/2/3): 88-97. [13] 周竹君, 金逸, 吴义华, 等. SiO2纳米改性变压器油特性研究[J]. 绝缘材料, 2016, 49(3): 47-52, 58. Zhou Zhujun, Jin Yi, Wu Yihua, et al.Study on characteristics of transformer oil modified by silica nanoparticles[J]. Insulating Materials, 2016, 49(3): 47-52, 58. [14] 寇晓适, 任欢, 宋伟, 等. 基于AlN纳米粒子改性的纳米变压器油雷电冲击特性研究[J]. 绝缘材料, 2016, 49(9): 72-76. Kou Xiaoshi, Ren Huan, Song Wei, et al.Study on lightning impulse characteristics of transformer oil modified by AlN nanoparticles[J]. Insulating Materials, 2016, 49(9): 72-76. [15] Taha-Tijerina J, Narayanan T N, Gao Guanhui, et al.Electrically insulating thermal nano-oils using 2D fillers[J]. ACS Nano, 2012, 6(2): 1214-1220. [16] Hanai M, Hosomi S, Kojima H, et al.Dependence of TiO2 and ZnO nanoparticle concentration on electrical insulation characteristics of insulating oil[C]//2013 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Shenzhen, China, 2013: 780-783. [17] 莫洋, 杨丽君, 鄢水强, 等. 掺杂纳米Al2O3对纤维绝缘纸电寿命的影响及机理[J]. 电工技术学报, 2018, 33(19): 4618-4626. Mo Yang, Yang Lijun, Yan Shuiqiang, et al.Influence and mechanism of doped nano-Al2O3 on electrical life of cellulose insulating paper[J]. Transactions of China Electrotechnical Society, 2018, 33(19): 4618-4626. [18] 廖瑞金, 吕程, 吴伟强, 等. 纳米TiO2改性绝缘纸的绝缘性能[J]. 高电压技术, 2014, 40(7): 1932-1939. Liao Ruijin, Lü Cheng, Wu Weiqiang, et al.Insulating property of insulation paper modified by nano-TiO2[J]. High Voltage Engineering, 2014, 40(7): 1932-1939. [19] 丁金. 油浸纳米改性绝缘纸板的界面电荷及击穿特性研究[D]. 赣州: 江西理工大学, 2021. [20] 缪金, 董明, 吴雪舟, 等. 纳米改性变压器油研究进展[J]. 中国电机工程学报, 2013, 33(9): 146-154. Miao Jin, Dong Ming, Wu Xuezhou, et al.Reviews on transformer oil-based nanofluids[J]. Proceedings of the CSEE, 2013, 33(9): 146-154. [21] Wang Xiangqi, Mujumdar A S.Heat transfer characteristics of nanofluids: a review[J]. International Journal of Thermal Sciences, 2007, 46(1): 1-19. [22] Li Yanjiao, Zhou Jingen, Tung S, et al.A review on development of nanofluid preparation and characterization[J]. Powder Technology, 2009, 196(2): 89-101. [23] Yu Wei, Xie Huaqing.A review on nanofluids: preparation, stability mechanisms, and applications[J]. Journal of Nanomaterials, 2012, 2012: 435873. [24] Choi C, Yoo H S, Oh J M.Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants[J]. Current Applied Physics, 2008, 8(6): 710-712. [25] Zou Ping, Li Jian, Sun Caixin, et al.Dielectric properties and electrodynamic process of natural ester-based insulating nanofluid[J]. Modern Physics Letters B, 2011, 25(25): 2021-2031. [26] Shen L P, Wang H, Dong M, et al.Solvothermal synthesis and electrical conductivity model for the zinc oxide-insulated oil nanofluid[J]. Physics Letters A, 2012, 376(10/11): 1053-1057. [27] Viali W R, Alcantara G B, Sartoratto P P C, et al. Investigation of the molecular surface coating on the stability of insulating magnetic oils[J]. The Journal of Physical Chemistry C, 2010, 114(1): 179-188. [28] 周远翔, 寇晓适, 杨颖, 等. 纳米改性变压器油制备与绝缘特性研究现状[J]. 绝缘材料, 2016, 49(11): 26-35. Zhou Yuanxiang, Kou Xiaoshi, Yang Ying, et al.Research status on synthesis and insulating properties of nano-modified transformer oil[J]. Insulating Materials, 2016, 49(11): 26-35. [29] Lü Yuzhen, Ge Yang, Sun Zhen, et al.Effect of nanoparticle morphology on pre-breakdown and breakdown properties of insulating oil-based nanofluids[J]. Nanomaterials, 2018, 8(7): 476. [30] 董明, 杨凯歌, 马馨逸, 等. 纳米改性变压器油中载流子输运特性分析[J]. 电工技术学报, 2020, 35(21): 4597-4608. Dong Ming, Yang Kaige, Ma Xinyi, et al.Analysis of charge-carrier transport characteristics of transformer oil-based nanofluids[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4597-4608. [31] Beavers M F, Raab E L, Raab L, et al.Permalex, a new insulation system[J]. Transactions of the American Institute of Electrical Engineers Part III: Power Apparatus and Systems, 1960, 79(3): 64-70. [32] 崔彦捷, 汲胜昌, 祝令瑜, 等. 机械应力对油浸绝缘纸板局部放电影响[J]. 电工技术学报, 2021, 36(12): 2659-2666. Cui Yanjie, Ji Shengchang, Zhu Lingyu, et al.Effect of mechanical stress on partial discharge of oil-impregnated pressboard[J]. Transactions of China Electrotechnical Society, 2021, 36(12): 2659-2666. [33] 廖瑞金, 杨丽君, 郑含博, 等. 电力变压器油纸绝缘热老化研究综述[J]. 电工技术学报, 2012, 27(5): 1-12. Liao Ruijin, Yang Lijun, Zheng Hanbo, et al.Reviews on oil-paper insulation thermal aging in power transformers[J]. Transactions of China Electrotechnical Society, 2012, 27(5): 1-12. [34] 杨丽君, 廖瑞金, 孙才新, 等. 植物油对油浸绝缘纸老化速率的影响及机理[J]. 电工技术学报, 2012, 27(5): 26-33. Yang Lijun, Liao Ruijin, Sun Caixin, et al.Influence of vegetable oil on the thermal aging rate of kraft paper and its mechanism[J]. Transactions of China Electrotechnical Society, 2012, 27(5): 26-33. [35] 李清泉, 王良凯, 王培锦, 等. 换流变压器油纸绝缘局部放电及电荷分布特性研究综述[J]. 高电压技术, 2020, 46(8): 2815-2829. Li Qingquan, Wang Liangkai, Wang Peijin, et al.Review on partial discharge and charge distribution characteristics of oil-paper insulation in converter transformer[J]. High Voltage Engineering, 2020, 46(8): 2815-2829. [36] 廖瑞金, 梁帅伟, 周天春, 等. 天然酯-纸绝缘热老化速度减缓及其原因分析[J]. 电工技术学报, 2008, 23(9): 32-37, 44. Liao Ruijin, Liang Shuaiwei, Zhou Tianchun, et al.Comparison for the mineral oil-paper and the nature ester-paper insulation degradation and cause analysis[J]. Transactions of China Electrotechnical Society, 2008, 23(9): 32-37, 44. [37] 廖瑞金, 王季宇, 袁媛, 等. 换流变压器下新型纤维素绝缘纸特性综述[J]. 电工技术学报, 2016, 31(10): 1-15. Liao Ruijin, Wang Jiyu, Yuan Yuan, et al.Review on the characteristic of new cellulose insulation paper used in the converter transformer[J]. Transactions of China Electrotechnical Society, 2016, 31(10): 1-15. [38] Nishino T, Matsuda I, Hirao K.All-cellulose composite[J]. Macromolecules, 2004, 37(20): 7683-7687. [39] 廖瑞金, 吴伟强, 聂仕军, 等. 复合热稳定剂对绝缘纸协同抗老化效应的分子模拟研究[J]. 电工技术学报, 2015, 30(10): 330-337. Liao Ruijin, Wu Weiqiang, Nie Shijun, et al.Study on the synergistic anti-aging effect of composite thermal stabilizers on the insulation paper by molecular modeling[J]. Transactions of China Electrotechnical Society, 2015, 30(10): 330-337. [40] 杨雁, 袁磊, 王谦, 等. 不同复合热稳定剂对矿物油-改性纸绝缘系统热老化特性的影响[J]. 高电压技术, 2013, 39(5): 1121-1127. Yang Yan, Yuan Lei, Wang Qian, et al.Influence of different compound thermal stabilizers on aging characteristics of mineral oil-modified paper insulation system[J]. High Voltage Engineering, 2013, 39(5): 1121-1127. [41] Segal V, Rabinovich A, Nattrass D, et al. Experimental study of magnetic colloidal fluids behavior in power transformers[J]. Journal of Magnetism and Magnetic Materials, 2000, 215/216: 513-515. [42] Hao Jian, Li Yanqing, Liao Ruijin, et al.Fabrication of Al2O3 nano-structure functional film on a cellulose insulation polymer surface and its space charge suppression effect[J]. Polymers, 2017, 9(10): 502. [43] Huang Meng, Ying Yupeng, Liu Baixin, et al.Enhanced voltage distribution and breakdown strength performances of oil-paper composite insulation by adding TiO2 nanoparticles[J]. High Voltage, 2021, 6(1): 42-50. [44] 牛铭康, 刘柏欣, 吴延宇, 等. 直流电压下TiO2纳米改性变压器油中电晕放电特性及机理[J]. 高电压技术, 2021, 47(3): 1037-1045. Niu Mingkang, Liu Baixin, Wu Yanyu, et al.Characteristics and mechanism of corona discharge in transformer oil modified by TiO2 nanoparticles under DC voltage[J]. High Voltage Engineering, 2021, 47(3): 1037-1045. [45] 黄猛, 牛铭康, 应宇鹏, 等. 纳米TiO2改性变压器油中电子迁移特性及机制[J]. 高电压技术, 2020, 46(12): 4220-4226. Huang Meng, Niu Mingkang, Ying Yupeng, et al.Properties and mechanism of electron transfer in transformer oil modified with TiO2 nanoparticles[J]. High Voltage Engineering, 2020, 46(12): 4220-4226. [46] Liu Daosheng, Guo Zhengyang, Ding Jin, et al.Thermal aging effect on properties of pure and doped nano-TiO2 cellulose pressboard[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(1): 133-141. [47] 刘道生, 郭正阳, 赵子明, 等. 纳米TiO2改性纤维素绝缘纸板热老化特性[J]. 高电压技术, 2021, 47(9): 3134-3143. Liu Daosheng, Guo Zhengyang, Zhao Ziming, et al.Thermal aging characteristics of cellulose insulating pressboard modified by nano-TiO2[J]. High Voltage Engineering, 2021, 47(9): 3134-3143. [48] Liu Daosheng, Ye Jing, Guo Zhengyang.Electrical characteristics of the pressboard modified by nano-TiO2 for different electrical ageing stages[J]. IET Science, Measurement & Technology, 2020, 14(9): 722-730. [49] 成立, 方伟, 王汉卿, 等. 基于非线性声学的纳米复合电介质分散性整体无损评估方法[J]. 中国电机工程学报, 2021, 41(15): 5401-5412. Cheng Li, Fang Wei, Wang Hanqing, et al.Overall nondestructive evaluation method for the dispersion of nanocomposite dielectrics based on nonlinear acoustics[J]. Proceedings of the CSEE, 2021, 41(15): 5401-5412. [50] 杨佳明, 赵洪, 郑昌佶, 等. 纳米粒子分散性对SiO2/LDPE纳米复合介质直流介电性能的影响[J]. 中国电机工程学报, 2015, 35(19): 5087-5094. Yang Jiaming, Zhao Hong, Zheng Changji, et al.Effects of nanoparticles dispersion on the DC dielectric properties of SiO2/LDPE nanocomposite[J]. Proceedings of the CSEE, 2015, 35(19): 5087-5094. [51] Wang Xinyu, Andritsch T, Chen G, et al.The role of the filler surface chemistry on the dielectric and thermal properties of polypropylene aluminium nitride nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(3): 1009-1017. [52] Hwang J G, Zahn M, O'Sullivan F M, et al. Effects of nanoparticle charging on streamer development in transformer oil-based nanofluids[J]. Journal of Applied Physics, 2010, 107(1): 014310. [53] Ibrahim M E, Abd-Elhady A M, Izzularab M A. Effect of nanoparticles on transformer oil breakdown strength: experiment and theory[J]. IET Science, Measurement & Technology, 2016, 10(8): 839-845. [54] Du Yuefan, Lv Yuzhen, Wang Fochi, et al.Effect of TiO2 nanoparticles on the breakdown strength of transformer oil[C]//2010 IEEE International Symposium on Electrical Insulation, San Diego, CA, USA, 2010: 1-3. [55] 杜岳凡, 吕玉珍, 李成榕, 等. 半导体纳米粒子改性变压器油的绝缘性能及机制研究[J]. 中国电机工程学报, 2012, 32(10):177-182, 24. Du Yuefan, Lü Yuzhen, Li Chengrong, et al.Insulating property and mechanism of semiconducting nanoparticles modified transformer oils[J]. Proceedings of the CSEE, 2012, 32(10): 177-182, 24. [56] Sima Wenxia, Shi Jian, Yang Qing, et al.Effects of conductivity and permittivity of nanoparticle on transformer oil insulation performance: experiment and theory[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(1): 380-390. [57] Takada T, Hayase Y, Tanaka Y, et al.Space charge trapping in electrical potential well caused by permanent and induced dipoles for LDPE/MgO nanocomposite[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(1): 152-160. [58] 张宏亮, 金海, 张丝钰, 等. 纳米氧化石墨烯/环氧树脂复合材料的电极极化现象[J]. 电工技术学报, 2018, 33(23): 5591-5599. Zhang Hongliang, Jin Hai, Zhang Siyu, et al.Electrode polarization in graphene oxide/epoxy resins nanocomposites[J]. Transactions of China Electrotechnical Society, 2018, 33(23): 5591-5599. [59] Lewis T J.Interfaces are the dominant feature of dielectrics at the nanometeric level[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(5): 739-753. [60] Tanaka T, Kozako M, Fuse N, et al.Proposal of a multi-core model for polymer nanocomposite dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(4): 669-681. [61] Du Yuefan, Lv Yuzhen, Li Chengrong, et al.Effect of electron shallow trap on breakdown performance of transformer oil-based nanofluids[J]. Journal of Applied Physics, 2011, 110(10): 104104. [62] Du Yuefan, Lü Yuzhen, Li Chengrong, et al.Effect of nanoparticles on charge transport in nanofluid-impregnated pressboard[J]. Journal of Applied Physics, 2012, 111(12): 124322. [63] Zhou You, Zhong Yuxiang, Chen Mutian, et al.Effect of nanoparticles on electrical characteristics of transformer oil-based nanofluids impregnated pressboard[C]//2012 IEEE International Sympo- sium on Electrical Insulation, San Juan, PR, USA, 2012: 650-653. [64] Liao Ruijin, Lü Cheng, Yang Lijun, et al.Space charge behavior in oil-impregnated insulation paper reinforced with nano-TiO2[J]. BioResources, 2013, 8(4): 5655-5665. [65] 周远翔, 王宁华, 王云杉, 等. 固体电介质空间电荷研究进展[J]. 电工技术学报, 2008, 23(9): 16-25. Zhou Yuanxiang, Wang Ninghua, Wang Yunshan, et al.Review of research on space charge in solid dielectrics[J]. Transactions of China Electro- technical Society, 2008, 23(9): 16-25. [66] 周凯, 吴广宁, 邓桃, 等. 纳米复合绝缘材料的热刺激电流测试研究[J]. 中国电机工程学报, 2007, 27(18): 76-82. Zhou Kai, Wu Guangning, Deng Tao, et al.The measurement of TSC in nano composite insulation[J]. Proceedings of the CSEE, 2007, 27(18): 76-82. [67] 任辉. 聚酰亚胺/碳纳米管复合薄膜的电性能与热刺激电流研究[D]. 哈尔滨: 哈尔滨理工大学, 2011. [68] Li Y, Takada T.Progress in space charge measurement of solid insulating materials in Japan[J]. IEEE Electrical Insulation Magazine, 1994, 10(5): 16-28. [69] Takada T.Acoustic and optical methods for measuring electric charge distributions in dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1999, 6(5): 519-547. [70] Morshuis P, Jeroense M.Space charge measurements on impregnated paper: a review of the PEA method and a discussion of results[J]. IEEE Electrical Insulation Magazine, 1997, 13(3): 26-35. [71] 廖瑞金, 项敏, 袁媛, 等. 纳米Al2O3掺杂对绝缘纸的空间电荷及陷阱能级分布特征的影响[J]. 高电压技术, 2019, 45(3): 681-690. Liao Ruijin, Xiang Min, Yuan Yuan, et al.Effects of nano-Al2O3 on space charge behavior and trap energy distibution characteristics of insulation paper[J]. High Voltage Engineering, 2019, 45(3): 681-690. [72] 李彦青, 郝建, 刘丛, 等. 绝缘纸板表面微纳Al2O3/PTFE复合功能层制备及其对空间电荷注入的影响[J]. 电工技术学报, 2020, 35(18): 3960-3971. Li Yanqing, Hao Jian, Liu Cong, et al.Fabrication of the micro/nano-structure Al2O3/PTFE composite functional film on the surface of insulation pressboard and its effect on space charge injection[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3960-3971. [73] 吕程, 廖瑞金, 吴伟强, 等. 纳米TiO2对油纸绝缘介质直流空间电荷特性的影响[J]. 高电压技术, 2015, 41(2): 417-423. Lü Cheng, Liao Ruijin, Wu Weiqiang, et al.Influence of nano-TiO2 on DC space charge characteristics of oil-paper insulation material[J]. High Voltage Engineering, 2015, 41(2): 417-423. [74] 廖瑞金, 柳海滨, 柏舸, 等. 纳米SiO2/芳纶绝缘纸复合材料的空间电荷特性和介电性能[J]. 电工技术学报, 2016, 31(12): 40-48. Liao Ruijin, Liu Haibin, Bai Ge, et al.Space charge characteristics and dielectric properties of nano-SiO2/aramid paper composite[J]. Transactions of China Electrotechnical Society, 2016, 31(12): 40-48. [75] 柏舸, 廖瑞金, 刘娜, 等. 纳米氮化铝改性对芳纶1313绝缘纸介电特性的影响[J]. 高电压技术, 2015, 41(2): 461-467. Bai Ge, Liao Ruijin, Liu Na, et al.Influence of nano-AlN modification on the dielectric properties of meta-aramid paper[J]. High Voltage Engineering, 2015, 41(2): 461-467. [76] Du Boxue, Li Xiaolong, Jiang Jinpeng.Surface charge accumulation and decay on direct- fluorinated oil-impregnated paper[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(5): 3094-3101. [77] Du Boxue, Zhu Wenbo, Li Xiaolong.Effects of direct fluorination on charge coupling behavior of oil-paper insulation under DC and pulse voltages[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(2): 947-955. [78] Du Yuefan, Lü Yuzhen, Li Chengrong, et al.Effect of semiconductive nanoparticles on insulating performances of transformer oil[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(3): 770-776. [79] Herchl F, Marton K, Tomčo L, et al.Breakdown and partial discharges in magnetic liquids[J]. Journal of Physics Condensed Matter, 2008, 20(20): 204110. [80] 王琪, 周游, 陈鑫, 等. TiO2纳米粒子对油浸纸板沿面放电的影响[J]. 绝缘材料, 2015, 48(8): 36-40. Wang Qi, Zhou You, Chen Xin, et al.Effect of TiO2 nanoparticles on surface discharge characteristics of transformer oil impregnated pressboard[J]. Insulating Materials, 2015, 48(8): 36-40. [81] Lü Yuzhen, Zhou You, Li Chengrong, et al.Creeping discharge characteristics of nanofluid-impregnated pressboards under AC stress[J]. IEEE Transactions on Plasma Science, 2016, 44(11): 2589-2593. [82] Ge Yang, Zou Hanyu, Shan Bingliang, et al.Positive streamer characteristic at the interface of TiO2 nanofluid/pressboard under lightning impulse voltage[C]//2017 IEEE 19th International Conference on Dielectric Liquids (ICDL), Manchester, UK, 2017: 1-4. [83] 马凯波. 纳米改性变压器油浸纸板沿面爬电性能的研究[D]. 北京: 华北电力大学, 2015. [84] 马馨逸, 董明, 王思云, 等. 纳米改性变压器油工频局部放电特性研究[J]. 绝缘材料, 2019, 52(11): 63-69. Ma Xinyi, Dong Ming, Wang Siyun, et al.Power frequency partial discharge characteristics of transformer oil-based nanofluids[J]. Insulating Materials, 2019, 52(11): 63-69. [85] Huang Meng, Wang Lei, Ge Yang, et al.Creeping flashover characteristics improvement of nanofluid/ pressboard system with TiO2 nanoparticles[J]. AIP Advances, 2018, 8(3): 035205. [86] Huang Meng, Han Qiubo, Lü Yuzhen, et al.Effect of nanoparticle shapes on creeping flashover characteristics at the interface of nanofluid-impregnated pressboard[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(3): 1135-1141. [87] Huang Meng, Ying Yupeng, Shan Bingliang, et al.Polarization and trap characteristics modification of oil-impregnated paper insulation by TiO2 nano-particles[J]. Nanomaterials, 2019, 9(2): 174. [88] 谢东日, 闵道敏, 黄印, 等. 纳米复合电介质击穿与耐电晕性的纳米掺杂效应[J]. 中国电机工程学报, 2018, 38(19): 5909-5918, 5949. Xie Dongri, Min Daomin, Huang Yin, et al.Nano-doping effects on dielectric breakdown and corona-resistance properties of polymeric nanocomposites[J]. Proceedings of the CSEE, 2018, 38(19): 5909-5918, 5949. [89] 王威望, 李盛涛, 刘文凤. 聚合物纳米复合电介质的击穿性能[J]. 电工技术学报, 2017, 32(16): 25-36. Wang Weiwang, Li Shengtao, Liu Wenfeng.Diele-ctric breakdown of polymer nanocomposites[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 25-36. [90] 王威望, 李盛涛. 工程固体电介质绝缘击穿研究现状及发展趋势[J]. 科学通报, 2020, 65(31): 3461-3474. Wang Weiwang, Li Shengtao.Research status and development of insulation breakdown in engineering solid dielectrics[J]. Chinese Science Bulletin, 2020, 65(31): 3461-3474. [91] Liao Ruijin, Zhang Fuzhou, Yang Lijun.Electrical and thermal properties of kraft paper reinforced with montmorillonite[J]. Journal of Applied Polymer Science, 2012, 126(S1): E291-E296. [92] 张福州, 廖瑞金, 袁媛, 等. 低介电常数绝缘纸的制备及其击穿性能[J]. 高电压技术, 2012, 38(3): 691-696. Zhang Fuzhou, Liao Ruijin, Yuan Yuan, et al.Preparation for low-permittivity insulation paper and its breakdown performance[J]. High Voltage Engineering, 2012, 38(3): 691-696. [93] 周远翔, 王云杉, 田冀焕, 等. 纳米改性变压器油的破坏特性[J]. 高电压技术, 2010, 36(5): 1155-1159. Zhou Yuanxiang, Wang Yunshan, Tian Jihuan, et al.Breakdown characteristics in transformer oil modified by nanoparticles[J]. High Voltage Engineering, 2010, 36(5): 1155-1159. [94] Khaled U, Beroual A.AC dielectric strength of mineral oil-based Fe3O4 and Al2O3 nanofluids[J]. Energies, 2018, 11(12): 3505. [95] Primo V A, García B, Burgos J C, et al.Investigation of the lightning impulse breakdown voltage of mineral oil based Fe3O4 nanofluids[J]. Coatings, 2019, 9(12): 799. [96] Wang Qi, Rafiq M, Lü Yuzhen, et al.Preparation of three types of transformer oil-based nanofluids and comparative study on the effect of nanoparticle concentrations on insulating property of transformer oil[J]. Journal of Nanotechnology, 2016, 2016: 1-6. [97] 王颂, 高文胜, 白翠粉, 等. 基于线性累积损伤模型的变压器绝缘寿命评估[J]. 南方电网技术, 2015, 9(6): 45-48. Wang Song, Gao Wensheng, Bai Cuifen, et al.Transformer insulation life assessment based on linear cumulative damage model[J]. Southern Power System Technology, 2015, 9(6): 45-48. [98] 张明泽, 刘骥, 陈昕, 等. 基于Wiener模型的变压器油纸绝缘老化剩余寿命评估方法[J]. 电工技术学报, 2018, 33(21): 5098-5108. Zhang Mingze, Liu Ji, Chen Xin, et al.Residual life assessment method of transformer oil-paper insulation aging based on Wiener model[J]. Transactions of China Electrotechnical Society, 2018, 33(21): 5098-5108. [99] 李长云, 孙孟玉, 张迎春. 基于油中水分含量的变压器绝缘纸寿命评估[J]. 高电压技术, 2018, 44(8): 2541-2547. Li Changyun, Sun Mengyu, Zhang Yingchun.Life expectancy evaluation of transformer insulation paper based on moisture content in oils[J]. High Voltage Engineering, 2018, 44(8): 2541-2547. [100] 刘骥, 吕佳璐, 张明泽, 等. 换油条件下变压器油纸绝缘老化寿命评估研究[J]. 高电压技术, 2020, 46(5): 1750-1758. Liu Ji, Lü Jialu, Zhang Mingze, et al.Aging lifetime evaluation of transformer oil-paper insulation considering oil replacement[J]. High Voltage Engineering, 2020, 46(5): 1750-1758. [101] 魏意恒, 杨丽君, 徐治仁, 等. “快速发展型”放电故障及其对油纸绝缘的损伤特性[J]. 电工技术学报, 2022, 37(4): 1020-1030. Wei Yiheng, Yang Lijun, Xu Zhiren, et al.The rapid-development-type discharge failure and its damage characteristics to oil-paper insulation[J]. Transactions of China Electrotechnical Society, 2022, 37(4): 1020-1030. |
|
|
|