|
|
Effect of Silane Coupling Agent Modified Nano-AlN on Electrical and Aging Properties of Silicone Elastomer for SiC Device Packaging |
Chen Xiangrong1,2,3, Wang Qilong1,2, Huang Xiaofan1, Zhang Tianyin1, Ren Na2 |
1. College of Electrical Engineering Zhejiang University Hangzhou 310027 China 2. Hangzhou Global Scientific and Technological Innovation Center Zhejiang University Hangzhou 311200 China 3. Advanced Electrical International Research Center Zhejiang University Haining 314400 China |
|
|
Abstract To study the effect of the silane coupling agent modified nano-aluminum nitride (AlN) fillers on the electrical and high-temperature aging properties of the silicone elastomer, the pure silicone elastomer and its silane coupling agent modified nanocomposites were thermally aged for 500h under 250℃. The samples before and after aging were subjected to morphology analysis, SEM cross-section characterization, thermogravimetric analysis (TGA), DC conductivity and depolarization current testing, space charge measurement, dielectric spectroscopy, DC breakdown experiment and quantum chemical calculations (QCC). The interface state variation between the silicone elastomer matrix and the nano-AlN during the thermal aging process was analyzed, and the interface models before and after thermal aging were proposed. The results show that the pure silicone elastomer produces a large number of chain scission and internal micropores after thermal aging due to thermal decomposition, and its shallow trap density increases. Before thermal aging, an interfacial gap exists between the silicone elastomer matrix and nano-AlN, decreasing the shallow trap depth. The interface state before and after aging has an obvious effect on the thermal stability and electrical properties of the silicone elastomer nanocomposites. The chemical bonds and hydrogen bonds are formed between the silicone elastomer matrix and the nano-AlN after thermal aging, which not only improves thermal decomposition temperature, but also increases deep traps depth and density. Compared with the aged pure silicone elastomer, the aged nanocomposites have lower DC conductivity, less space charge accumulation, and higher DC breakdown strength, especially, 3% nanocomposite has the best thermal decomposition inhibition effect. The results show that the silane coupling agent modified nano-AlN fillers with an appropriate doping amount can improve the electrical and aging properties of the silicone elastomer obviously, meeting the long-term high-temperature application requirement of the silicon carbide device packaging materials.
|
Received: 25 February 2022
|
|
|
|
|
[1] 钱照明, 张军明, 盛况. 电力电子器件及其应用的现状和发展[J]. 中国电机工程学报, 2014, 34(29): 5149-5161. Qian Zhaoming, Zhang Junming, Sheng Kuang.Status and development of power semiconductor devices and its applications[J]. Proceedings of the CSEE, 2014, 34(29): 5149-5161. [2] Khazaka R, Mendizabal L, Henry D, et al.Survey of high-temperature reliability of power electronics packaging components[J]. IEEE Transactions on Power Electronics, 2015, 30(5): 2456-2464. [3] Yao Yiying, Lu Guoquan, Boroyevich D, et al.Survey of high-temperature polymeric encapsulants for power electronics packaging[J]. IEEE Transactions on Com- ponents, Packaging and Manufacturing Technology, 2015, 5(2): 168-181. [4] Yao Yiying, Chen Zheng, Lu Guoquan, et al.Charac- terization of encapsulants for high-voltage high- temperature power electronic packaging[J]. IEEE Transactions on Components Packaging and Manufa- cturing Technology, 2012, 2(4): 539-547. [5] Scofield J, Merrett N, Richmond J, et al. Electrical and thermal performance of 1200V, 100A, 200 degrees C 4H-SiC MOSFET-based power switch modules[J]. Materials Science Forum, 2010, 645-648: 1119-1122. [6] Chen Zheng, Yao Yiying, Zhang Wenli, et al.Deve- lopment of a 1200V, 120A SiC MOSFET module for high-temperature and high-frequency applications[C]// IEEE Workshop on Wide Bandgap Power Devices and Applications, Columbus, OH, 2013: 52-59. [7] Yao Yiying.Thermal stability of Al2O3/silicone composites as high-temperature encapsulants[D]. Blacksburg, VA: Virginia Polytechnic Institute and State University, 2014. [8] 陈灿, 王希林, 贾志东, 等. 基于高分子结晶分析方法的液体硅橡胶老化机制研究[J]. 中国电机工程学报, 2014, 34(9): 1462-1470. Chen Can, Wang Xilin, Jia Zhidong, et al.A polymer crystallization based study on the degradation mechanism of liquid silicone rubber[J]. Proceedings of the CSEE, 2014, 34(9): 1462-1470. [9] Lomakin S M, Koverzanova E V, Shilkina N G, et al.Thermal degradation of polystyrene- polydime- thylsiloxane blends[J]. Russian Journal of Applied Chemistry, 2003, 76(3): 472-482. [10] Scofield J D, Merrett J N, Richmond J, et al.Performance and reliability characteristics of 1200V, 100A, 200℃ half-bridge SiC MOSFET-JBS diode power modules[C]//Additional Conferences (Device Packaging HiTEC HiTEN & CICMT), Boston, 2010: 289-296. [11] Ogliani E, Yu Liyun, Mazurek P, et al.Designing reliable silicone elastomers for high-temperature applications[J]. Polymer Degradation and Stability, 2018, 157: 175-180. [12] 周远翔, 张云霄, 张旭, 等. 热老化时间对硅橡胶电树枝起始特性的影响[J]. 高电压技术, 2014, 40(4): 979-986. Zhou Yuanxiang, Zhang Yunxiao, Zhang Xu, et al.Influence of thermal aging time on electrical tree initiation of silicone rubber[J]. High Voltage Engineering, 2014, 40(4): 979-986. [13] 陈庆国, 尚南强, 魏昕喆. 热老化对液体硅橡胶材料介电性能及力学特性的影响研究[J]. 电机与控制学报, 2020, 24(4): 141-148. Chen Qingguo, Shang Nanqiang, Wei Xinzhe.Influence of thermal oxygen aging on dielectric and mechanical properties of liquid silicone rubber[J]. Electric Machines and Control, 2020, 24(4): 141-148. [14] Locatelli M L, Khazaka R, Diaham S, et al.Evalu- ation of encapsulation materials for high-temperature power device packaging[J]. IEEE Transactions on Power Electronics, 2014, 29(5): 2281-2288. [15] Kemaloglu S, Ozkoc G, Aytac A.Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites[J]. Thermochimica Acta, 2010, 499(1-2): 40-47. [16] Yao Yiying, Lu Guoquan, Boroyevich D, et al.Effect of Al2O3 fibers on the high-temperature stability of silicone elastomer[J]. Polymer, 2014, 55(16): 4232-4240. [17] Mu Qiuhong, Feng Shengyu, Diao Guangzhao.Thermal conductivity of silicone rubber filled with ZnO[J]. Polymer Composites, 2007, 28(2): 125-130. [18] Xue Yang, Li Xiaofei, Wang Haosheng, et al.Thermal conductivity improvement in electrically insulating silicone rubber composites by the construction of hybrid three-dimensional filler networks with boron nitride and carbon nanotubes[J]. Journal of Applied Polymer Science, 2019, 136(2): 46929. [19] Kaneko M L Q A, Yoshida I V P. Effect of natural and organically modified montmorillonite clays on the properties of polydimethylsiloxane rubber[J]. Journal of Applied Polymer Science, 2008, 108(4): 2587-2596. [20] Wang Yalin, Wu Jiandong, Yin Yi, et al.Effect of micro and nano-size boron nitride and silicon carbide on thermal properties and partial discharge resistance of silicone elastomer composite[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(2): 377-385. [21] Liu Yufeng, Shi Yunhui, Zhang Dian, et al.Pre- paration and thermal degradation behavior of room temperature vulcanized silicone rubber-g-polyhedral oligomeric silsesquioxanes[J]. Polymer, 2013, 54(22): 6140-6149. [22] Chen Xiangrong, Wang Qilong, Ren Na, et al.Potential of epoxy nanocomposites for packaging materials of high voltage power modules: a validation using experiments and simulation[J]. IEEE Transa- ctions on Dielectrics and Electrical Insulation, 2021, 28(6): 2161-2169. [23] 顼佳宇, 李学宝, 崔翔, 等. 高压大功率IGBT器件封装用有机硅凝胶的制备工艺及耐电性[J]. 电工技术学报, 2021, 36(2): 352-361. Xu Jiayu, Li Xuebao, Cui Xiang, et al.Preparation process and breakdown properties of silicone gel used for the encapsulation of IGBT power modules[J]. Transactions of China Electrotechnical Society, 2021, 36(2): 352-361. [24] Simmons J G, Tam M C.Theory of isothermal currents and the direct determination of trap para- meters in semiconductors and insulators containing arbitrary trap distributions[J]. Physical Review B, 1973, 7(8): 3706-3713. [25] 周远翔, 郭绍伟, 聂琼, 等. 纳米氧化铝对硅橡胶空间电荷特性的影响[J]. 高电压技术, 2010, 36(7): 1605-1611. Zhou Yuanxiang, Guo Shaowei, Nie Qiong, et al.Influences of nano-alumina on the space charge behavior of silicone rubber[J]. High Voltage Engin- eering, 2010, 36(7): 1605-1611. [26] 周远翔, 陈明, 张云霄, 等. 直流场下温度对硅橡胶电树枝起始特性的影响[J]. 高电压技术, 2018, 44(12): 3784-3790. Zhou Yuanxiang, Chen Ming, Zhang Yunxiao, et al.Influence of temperature on DC electrical tree initiation in silicone rubber[J]. High Voltage Engin- eering, 2018, 44(12): 3784-3790. [27] 刘东明, 李学宝, 顼佳宇, 等. 高压SiC器件封装用有机硅弹性体高温宽频介电特性分析[J]. 电工技术学报, 2021, 36(12): 2548-2559. Liu Dongming, Li Xuebao, Xu Jiayu, et al.Analysis of high temperature wide band dielectric properties of organic silicone elastomer for high voltage SiC device packaging[J]. Transactions of China Electrotechnical Society, 2021, 36(12): 2548-2559. [28] Chu Pengfei, Zhang Hui, Zhao Jun, et al.On the volume resistivity of silica nanoparticle filled epoxy with different surface modifications[J]. Composites Part A: Applied Science and Manufacturing, 2017, 99: 139-148. [29] 李俊杰, 梅云辉, 梁玉, 等. 功率器件高电压封装用复合电介质灌封材料研究[J]. 电工技术学报, 2022, 37(3): 786-792. Li Junjie, Mei Yunhui, Liang Yu, et al.Study on composite dielectric encapsulation materials for high voltage power device packaging[J]. Transactions of China Electrotechnical Society, 2022, 37(3): 786-792. [30] 李进, 赵仁勇, 杜伯学, 等. 量子化学计算在高压直流绝缘领域中的应用进展[J]. 高电压技术, 2020, 46(3): 772-781. Li Jin, Zhao Renyong, Du Boxue, et al.Application progress of quantum chemical calculation in the field of HVDC insulation[J]. High Voltage Engineering, 2020, 46(3): 772-781. [31] 谢伟, 杨征, 程显, 等. 环氧树脂材料热氧老化特性研究[J]. 电工技术学报, 2020, 35(20): 4397-4404. Xie Wei, Yang Zheng, Cheng Xian, et al.Study on thermo-oxygen aging characteristics of epoxy resin material[J]. Transactions of China Electrotechnical Society, 2020, 35(20): 4397-4404. [32] Tanaka T, Kozako M, Fuse N, et al.Proposal of a multi-core model for polymer nanocomposite die- lectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(4): 669-681. [33] Lewis T J.Nanometric dielectrics[J]. IEEE Transa- ctions on Dielectrics and Electrical Insulation, 1994, 1(5): 812-825. [34] Li Shengtao, Yin Guilai, Bai Suna, et al.A new potential barrier model in epoxy resin nanodie- lectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(5): 1535-1543. |
|
|
|