|
|
A Whole-Line Fast Protection Scheme for HVDC Transmission Line Based on Single-Ended Boundary Energy |
Yang Yayu1, Tai Nengling2, Xie Wei1, Zheng Xiaodong2, Ma Jianjun2 |
1. Logistics Engineering College Shanghai Maritime University Shanghai 201306 China; 2. Key Laboratory of Control of Power Transmission and Conversion Ministry of Education Shanghai Jiao Tong University Shanghai 200240 China |
|
|
Abstract Compared with high voltage alternating current (HVAC) power transmission systems, high-voltage direct current (HVDC) power transmission systems have lower power losses and more flexible power control capabilities. The HVDC transmission system plays an important role in modern new type power systems. Presently, the line protection methods operated in practical HVDC project include main protections and backup protections. The travelling-wave protection is widely used as the main protection. However, the transient travelling-wave signals would be weakened during high fault resistance grounded faults, which make it difficult to catch the wave-head. For backup protection methods, the voltage derivative protection and current differential protection operate with low reliability. As for the former, the rate of the voltage change may not reach the threshold, because high fault resistances could the attenuation of transient voltage caused by fault resistance. And the action speed of current differential protection is too slow to realize the protection function. Thus, the line protection methods in engineering applications can not completely meet the requirements of the practical HVDC project. To overcome these problems, some novel protection schemes have been proposed in recent years. However, the existing single-ended boundary energy protection schemes are not able to distinguish the remote end DC line faults from the rectifier-side-external faults. Single-ended hybrid protection methods overcome this problem, while these methods are complicated. In addition, the single-ended boundary energy protection schemes use the attenuation characteristic of line boundary on high frequency components to achieve fault identification. At the same time, these protection algorithms need a high sampling frequency. In view of the above problems, a novel single-end boundary energy based whole-line fast protection is proposed. During rectifier-side-external faults, the rectifier-line-side boundary energy is lower than the rectifier-valve-side boundary energy. During inverter-side-external faults, the rectifier-line-side boundary energy is lower than that for internal faults. During internal faults, the rectifier-line-side boundary energy is greater than the rectifier-valve-side boundary energy, and is greater than that for inverter-side-external faults. According to these characteristics, the boundary energy give a promising solution to determine whether a DC line fault occurs. Two-ended faulty pole selection criterion requires information coming from both ends of the DC lines. For speed, a single-ended faulty pole selection criterion is also proposed in this paper. A HVDC transmission test system established in PSCAD/EMTDC is applied to verify the proposed protection scheme. The following conclusions can be drawn from extensive simulation results in this paper: (1) Compared with existing travelling-wave protection, the proposed method has better reliability. (2) The proposed method is able to detect DC line faults with good speed. (3) The proposed method has good robustness with respect to fault location, fault resistance and sampling frequency. (4) The faulty pole selection criterion can differentiate the faulty pole from the healthy pole reliably. The contributions of this novel single-end boundary energy based whole-line fast protection are: (1) The proposed protection is able to distinguish the remote end DC line faults from the rectifier-side-external faults. Compared with single-ended hybrid protection methods, the proposed method is simple and is easy for practical applications. (2) The protection has low requirement for sampling device. (3) Even during a remote end fault with a high resistance as large as 300 Ω, the fault discrimination criterion is able to identify the DC line fault correctly.
|
Received: 10 December 2021
|
|
|
|
|
[1] 许汉平, 杨炜晨, 张东寅, 等. 考虑换相失败相互影响的多馈入高压直流系统换相失败判断方法[J]. 电工技术学报, 2020, 35(8): 1776-1786. Xu Hanping, Yang Weichen, Zhang Dongyin, et al.Commutation failure judgment method for multi-infeed HVDC systems considering the interaction of commutation failures[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1776-1786. [2] He Jiangbiao, Yang Qichen, Wang Zheng.On-line fault diagnosis and fault-tolerant operation of modular multilevel converters—a comprehensive review[J]. CES Transactions on Electrical Machines and Systems, 2020, 4(4): 360-372. [3] 贺永杰, 向往, 周家培, 等. LCC-MMC串联型混合直流输电系统小信号建模[J]. 电工技术学报, 2021, 36(7): 1492-1506. He Yongjie, Xiang Wang, Zhou Jiapei, et al.Small-signal modelling of LCC-MMC series hybrid HVDC transmission system[J]. Transactions of China Electrotechnical Society, 2021, 36(7): 1492-1506. [4] 王增平, 刘席洋, 郑博文, 等. 基于电压波形拟合的换相失败快速预测与抑制措施[J]. 电工技术学报, 2020, 35(7): 1454-1463. Wang Zengping, Liu Xiyang, Zheng Bowen, et al.The research on fast prediction and suppression measures of commutation failure based on voltage waveform fitting[J]. Transactions of China Electrotechnical Society, 2020, 35(7): 1454-1463. [5] Chen Yongyang, Pan Shangzhi, Huang Meng, et al.MMC-MTDC transmission system with partially hybrid branches[J]. CES Transactions on Electrical Machines and Systems, 2021, 5(2): 124-132. [6] 高本锋, 王刚, 刘毅, 等. LCC-HVDC送端电网等值方案研究[J]. 电工技术学报, 2021, 36(15): 3250-3263, 3271. Gao Benfeng, Wang Gang, Liu Yi, et al.Study on equivalence method of AC system in sending-end of LCC-HVDC[J]. Transactions of China Electrotechnical Society, 2021, 36(15): 3250-3263, 3271. [7] 甄永赞, 苏宁赛, 杨荆宜. 直流输电线路极波变化率保护的拓展方法研究[J]. 中国电机工程学报, 2021, 41(15): 5212-5220. Zhen Yongzan, Su Ningsai, Yang Jingyi.Research on extension method of polar wave change rate protection for HVDC transmission line[J]. Proceedings of the CSEE, 2021, 41(15): 5212-5220. [8] 陈鑫全, 李海锋, 顾广坤, 等. 基于时域电压比的高压直流输电线路暂态保护方案[J]. 电力系统自动化, 2020, 44(22): 62-69. Chen Xinquan, Li Haifeng, Gu Guangkun, et al.Transient protection scheme of HVDC transmission line based on time-domain voltage ratio[J]. Automation of Electric Power Systems, 2020, 44(22): 62-69. [9] 李海锋, 祝新驰, 梁远升, 等. 基于电流控制补偿的高压直流线路快速差动保护[J]. 电力系统自动化, 2021, 45(11): 111-119. Li Haifeng, Zhu Xinchi, Liang Yuansheng, et al.Fast differential protection for HVDC transmission line based on current control compensation[J]. Automation of Electric Power Systems, 2021, 45(11): 111-119. [10] 童晓阳, 杨明杰, 张广骁. 基于改进DTW的行波波形相似性的高压直流输电线路保护方案[J]. 中国电机工程学报, 2020, 40(12): 3878-3887. Tong Xiaoyang, Yang Mingjie, Zhang Guangxiao.A protection scheme for HVDC transmission line based on traveling waveform similarity using improved DTW algorithm[J]. Proceedings of the CSEE, 2020, 40(12): 3878-3887. [11] Ma Jing, Wu Yuchong, Liu Chen, et al.Pilot directional protection scheme for LCC-HVDC transmission lines based on the voltage difference between positive and negative poles[J]. IEEE Transactions on Power Delivery, 2022, 37(2): 696-709. [12] 束洪春, 田鑫萃, 董俊, 等. 利用电压相关性的±800kV直流输电线路区内外故障判断方法[J]. 中国电机工程学报, 2012, 32(4): 151-160. Shu Hongchun, Tian Xincui, Dong Jun, et al.Identification between internal and external faults of ±800 kV HVDC transmission lines based on voltage correlation[J]. Proceedings of the CSEE, 2012, 32(4): 151-160. [13] 王钢, 李志铿, 李海锋. ±800kV特高压直流线路暂态保护[J]. 电力系统自动化, 2007, 31(21): 40-43, 48. Wang Gang, Li Zhikeng, Li Haifeng.Transient based protection for ±800kV UHVDC transmission lines[J]. Automation of Electric Power Systems, 2007, 31(21): 40-43, 48. [14] 张保会, 张嵩, 尤敏, 等. 高压直流线路单端暂态量保护研究[J]. 电力系统保护与控制, 2010, 38(15): 18-23. Zhang Baohui, Zhang Song, You Min, et al.Research on transient-based protection for HVDC lines[J]. Power System Protection and Control, 2010, 38(15): 18-23. [15] 束洪春, 刘可真, 朱盛强, 等. ±800kV特高压直流输电线路单端电气量暂态保护[J]. 中国电机工程学报, 2010, 30(31): 108-117. Shu Hongchun, Liu Kezhen, Zhu Shengqiang, et al.±800kV UHVDC transmission line protection based on single end electrical transient signal[J]. Proceedings of the CSEE, 2010, 30(31): 108-117. [16] 陈仕龙, 张杰, 刘红锐, 等. 特高压直流输电线路单端电流方向暂态保护[J]. 电工技术学报, 2016, 31(2): 171-177. Chen Shilong, Zhang Jie, Liu Hongrui, et al.A single-ended current direction transient protection of UHVDC transmission line[J]. Transactions of China Electrotechnical Society, 2016, 31(2): 171-177. [17] 侯俊杰, 宋国兵, 常仲学, 等. 基于暂态功率的高压直流线路单端量保护[J]. 电力系统自动化, 2019, 43(21): 203-212. Hou Junjie, Song Guobing, Chang Zhongxue, et al.Transient power based single-end protection for HVDC transmission line[J]. Automation of Electric Power Systems, 2019, 43(21): 203-212. [18] 张保会, 孔飞, 张嵩, 等. 高压直流输电线路单端暂态量保护装置的技术开发[J]. 中国电机工程学报, 2013, 33(4): 179-185. Zhang Baohui, Kong Fei, Zhang Song, et al.Technical development of non-unit protection devices based on transient signals for HVDC transmission lines[J]. Proceedings of the CSEE, 2013, 33(4): 179-185. [19] Kong Fei, Hao Zhiguo, Zhang Song, et al.Development of a novel protection device for bipolar HVDC transmission lines[J]. IEEE Transactions on Power Delivery, 2014, 29(5): 2270-2278. [20] Liu Xiaolei, Osman A H, Malik O P.Real-time implementation of a hybrid protection scheme for bipolar HVDC line using FPGA[J]. IEEE Transactions on Power Delivery, 2011, 26(1): 101-108. [21] 樊艳芳, 王永进. 基于Hilbert能量幅值信息和波形信息的特高压直流输电线路单端保护方法[J]. 电工技术学报, 2021, 36(9): 1818-1830. Fan Yanfang, Wang Yongjin.Single-ended protection method for UHVDC transmission line based on Hilbert energy amplitude information and waveform information[J]. Transactions of China Electrotechnical Society, 2021, 36(9): 1818-1830. [22] 高飘, 郑晓冬, 晁晨栩, 等. 基于边界暂态能量的多端柔性直流输电线路保护[J]. 电力系统自动化, 2021, 45(17): 171-179. Gao Piao, Zheng Xiaodong, Chao Chenxu, et al.Protection for multi-terminal flexible DC transmission lines based on boundary transient energy[J]. Automation of Electric Power Systems, 2021, 45(17): 171-179. [23] 王钢, 罗健斌, 李海锋, 等. 特高压直流输电线路暂态能量保护[J]. 电力系统自动化, 2010, 34(1): 28-31. Wang Gang, Luo Jianbin, Li Haifeng, et al.Transient energy protection for ±800 kV UHVDC transmission lines[J]. Automation of Electric Power Systems, 2010, 34(1): 28-31. [24] Zheng Xiaodong, Tai Nengling, Yang Guangliang, et al.A transient protection scheme for HVDC transmission line[J]. IEEE Transactions on Power Delivery, 2012, 27(2): 718-724. [25] 杨亚宇, 邰能灵, 刘剑, 等. 利用边界能量的高压直流线路纵联保护方案[J]. 中国电机工程学报, 2015, 35(22): 5757-5767. Yang Yayu, Tai Nengling, Liu Jian, et al.A pilot protection scheme for HVDC transmission lines based on boundary energy[J]. Proceedings of the CSEE, 2015, 35(22): 5757-5767. [26] 韩民晓, 文俊, 徐永海. 高压直流输电原理与运行[M]. 3版. 北京: 机械工业出版社, 2020. [27] 赵畹君. 高压直流输电工程技术[M]. 北京: 中国电力出版社, 2004. [28] 张保会,尹项根, 索南加乐, 等. 电力系统继电保护[M]. 北京: 中国电力出版社, 2010. [29] Suonan Jiale, Zhang Jiankang, Jiao Zaibin, et al.Distance protection for HVDC transmission lines considering frequency-dependent parameters[J]. IEEE Transactions on Power Delivery, 2013, 28(2): 723-732. [30] 罗澍忻, 董新洲. 基于LCC的高压直流输电线路保护分析及展望[J]. 广东电力, 2019, 32(12): 121-129. Luo Shuxin, Dong Xinzhou.Analysis and prospects of HVDC transmission line protection based on LCC[J]. Guangdong Electric Power, 2019, 32(12): 121-129. [31] 李斌, 何佳伟, 李晔, 等. 基于边界特性的多端柔性直流配电系统单端量保护方案[J]. 中国电机工程学报, 2016, 36(21): 5741-5749, 6016. Li Bin, He Jiawei, Li Ye, et al.Single-ended protection scheme based on boundary characteristic for the multi-terminal VSC-based DC distribution system[J]. Proceedings of the CSEE, 2016, 36(21): 5741-5749, 6016. [32] de Kerf K, Srivastava K, Reza M, et al. Wavelet-based protection strategy for DC faults in multi-terminal VSC HVDC systems[J]. IET Generation, Transmission & Distribution, 2011, 5(4): 496. [33] 高本锋, 董沛毅, 刘辛晔, 等. 高压直流输电线路微分欠压保护特性与定值整定[J]. 电网技术, 2015, 39(8): 2303-2311. Gao Benfeng, Dong Peiyi, Liu Xinye, et al.Research of HVDC transmission line differential under-voltage protection characteristics and value setting[J]. Power System Technology, 2015, 39(8): 2303-2311. [34] 刘剑, 范春菊, 邰能灵. 用于高压直流输电线路的新型横差保护方法[J]. 高电压技术, 2016, 42(7): 2266-2274. Liu Jian, Fan Chunju, Tai Nengling.Novel transverse differential protection method for HVDC transmission line[J]. High Voltage Engineering, 2016, 42(7): 2266-2274. [35] 黄银龙, 乐健, 毛涛, 等. 基于谐波电流变化率的高压直流输电系统直流侧滤波器参数的在线辨识[J]. 电工技术学报, 2016, 31(6): 162-170. Huang Yinlong, Le Jian, Mao Tao, et al.The online parameters identification of the DC-side filter of high-voltage direct current system based on harmonic current change ratio[J]. Transactions of China Electrotechnical Society, 2016, 31(6): 162-170. [36] 任师铎, 肖浩, 李银红. 高压直流输电线路行波保护实用整定原则[J]. 电力自动化设备, 2019, 39(9): 54-60. Ren Shiduo, Xiao Hao, Li Yinhong.Practical setting principle of traveling wave protection for HVDC power transmission line[J]. Electric Power Automation Equipment, 2019, 39(9): 54-60. [37] Li Shilong, Chen Wei, Yin Xianggen, et al.A novel integrated protection for VSC-HVDC transmission line based on current limiting reactor power[J]. IEEE Transactions on Power Delivery, 2020, 35(1): 226-233. |
|
|
|