|
|
Harmonic Current Suppression Strategy for High-Speed Maglev Train Based on Integral Sliding Mode |
Cao Xueqian1,2, Ge Qiongxuan1, Zhu Jinquan1,2, Zhao Mutian1,2, Wang Xiaoxin1 |
1. Key Laboratory of Power Electronics and Electric Drive Institute of Electrical Engineering Chinese Academy of Sciences Beijing 100190 China; 2. University of Chinese Academy of Sciences Beijing 100049 China |
|
|
Abstract The high-speed maglev train is driven by a long-stator linear synchronous motor. When the train is running, there are a large number of harmonics in the motor stator phase current, which will affect the train's traction control performance and cause traction fluctuations. This paper deduces the harmonic voltage mathematical model of the long-stator linear synchronous motor in the double feed mode for the 5th and 7th harmonic currents with higher harmonic content, and extracts the harmonic currents through coordinate transformation and low-pass filtering. A harmonic controller based on integral sliding mode is designed, and a harmonic current loop is added to the control system, thereby suppressing the 5th and 7th harmonic components in the stator current of the motor. Finally, hardware-in-the-loop experiments are carried out on the control strategy proposed in this paper and the traditional harmonic suppression strategy. Comparing the experimental results shows that the proposed strategy has a stronger harmonic suppression capability.
|
Received: 18 September 2021
|
|
|
|
|
[1] 吴祥明. 磁浮列车[M]. 上海: 上海科学技术出版社, 2003. [2] 刘金鑫, 葛琼璇, 王晓新, 等. 高速磁浮牵引控制系统半实物实验研究[J]. 电工技术学报, 2015, 30(14): 497-503. Liu Jinxin, Ge Qiongxuan, Wang Xiaoxin, et al.Hardware-in-loop research of traction-system for high-speed maglev[J]. Transactions of China Electro- technical Society, 2015, 30(14): 497-503. [3] 张波, 葛琼璇, 王晓新, 等. 三电平ANPC变流器中点电位控制策略研究[J]. 电工电能新技术, 2016, 35(8): 1-7. Zhang Bo, Ge Qiongxuan, Wang Xiaoxin, et al.Research on neutral point potential balancing for three- level ANPC converter[J]. Advanced Technology of Electrical Engineering and Energy, 2016, 35(8): 1-7. [4] 孙雨萍, 李光友. 长定子直线同步电动机抑制推力脉动的新方法及机理分析[J]. 电工技术学报, 2006, 21(8): 80-82, 89. Sun Yuping, Li Guangyou.Method and mechanism analysis of retraining thrust pulsation for long stator linear synchromotors[J]. Transactions of China Elec- trotechnical Society, 2006, 21(8): 80-82, 89. [5] 张晓明, 蔡涛, 胡宏晟, 等. 计及谐波和死区影响的IPT系统时域建模与软开关特性分析[J]. 电力系统自动化, 2019, 43(17): 140-146. Zhang Xiaoming, Cai Tao, Hu Hongsheng, et al.Time-domain modeling and soft-switching characteristic analysis of inductive power transfer system con- sidering influence of harmonics and dead time[J]. Automation of Electric Power Systems, 2019, 43(17): 140-146. [6] 陈杰, 章新颖, 闫震宇, 等. 基于虚拟阻抗的逆变器死区补偿及谐波电流抑制分析[J]. 电工技术学报, 2021, 36(8): 1671-1680. Chen Jie, Zhang Xinying, Yan Zhenyu, et al.Dead- time effect and background grid-voltage harmonic suppression methods for inverters with virtual impedance control[J]. Transactions of China Elec- trotechnical Society, 2021, 36(8): 1671-1680. [7] Qi Yang, Fang Jingyang, Liu Jiazhe, et al.Coor- dinated control for harmonic mitigation of parallel voltage-source inverters[J]. CES Transactions on Elec- trical Machines and Systems, 2018, 2(3): 276-283. [8] 李帅, 孙立志, 刘兴亚, 等. 永磁同步电机电流谐波抑制策略[J]. 电工技术学报, 2019, 34(增刊1): 87-96. Li Shuai, Sun Lizhi, Liu Xingya, et al.Current harmonics suppression strategies of permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 87-96. [9] 武永燎, 李红, 宋欣达, 等. 基于改进型重复控制器的永磁同步电机电流谐波抑制方法研究[J]. 电工技术学报, 2019, 34(11): 2277-2286. Wu Yongliao, Li Hong, Song Xinda, et al.Suppression of harmonic current in permanent magnet synchronous motors using improved repetitive controller[J]. Transactions of China Electrotechnical Society, 2019, 34(11): 2277-2286. [10] 张剑, 温旭辉, 李文善, 等. 基于谐波观测器的永磁同步电机谐波电流抑制策略研究[J]. 中国电机工程学报, 2020, 40(10): 3336-3349. Zhang Jian, Wen Xuhui, Li Wenshan, et al.Research on harmonic current suppression strategies of permanent magnet synchronous motor systems based on harmonic observers[J]. Proceedings of the CSEE, 2020, 40(10): 3336-3349. [11] 魏艺涵, 罗响, 朱莉, 等. 基于比例谐振控制器的高凸极率永磁同步电机电流谐波抑制策略研究[J]. 中国电机工程学报, 2021, 41(7): 2526-2537. Wei Yihan, Luo Xiang, Zhu Li, et al.Research on current harmonic suppression strategy of high saliency ratio permanent magnet synchronous motor based on proportional resonance controller[J]. Pro- ceedings of the CSEE, 2021, 41(7): 2526-2537. [12] 夏薇, 王凯, 张建亚, 等. 基于谐振控制器的谐波削极型永磁同步电机转矩脉动抑制策略[J]. 中国电机工程学报, 2019, 39(18): 5499-5508, 5598. Xia Wei, Wang Kai, Zhang Jianya, et al.Torque ripple suppression of permanent magnet synchronous motor with harmonic shaped rotors based on resonance controllers[J]. Proceedings of the CSEE, 2019, 39(18): 5499-5508, 5598. [13] Liu Gang, Chen Baodong, Wang Kun, et al.Selective Current harmonic suppression for high-speed PMSM based on high-precision harmonic detection method[J]. IEEE Transactions on Industrial Informatics, 2019, 15(6): 3457-3468. [14] 刘刚, 孙庆文, 肖烨然. 永磁同步电机用坐标变换的电流谐波抑制方法[J]. 电机与控制学报, 2015, 19(5): 30-36. Liu Gang, Sun Qingwen, Xiao Yeran.Permanent magnet synchronous motor current harmonics suppression based on coordinate transformation[J]. Electric Machines and Control, 2015, 19(5): 30-36. [15] Xu Yongxiang, Zheng Boyuan, Wang Guan, et al.Current harmonic suppression in dual three-phase permanent magnet synchronous machine with extended state observer[J]. IEEE Transactions on Power Electronics, 2020, 35(11): 12166-12180. [16] 金鸿雁, 赵希梅, 原浩. 永磁直线同步电机动态边界层全局互补滑模控制[J]. 电工技术学报, 2020, 35(9): 1945-1951. Jin Hongyan, Zhao Ximei, Yuan Hao.Dynamic boundary layer global complementary sliding mode control for permanent magnet linear synchronous motor[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1945-1951. [17] 陈闯, 王勃, 于泳, 等. 基于改进指数趋近律的感应电机滑模转速观测器研究[J]. 电工技术学报, 2020, 35(增刊1): 155-163. Chen Chuang, Wang Bo, Yu Yong, et al.An improved exponential reaching law based-sliding mode observer for speed-sensorless induction motor drives[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 155-163. [18] Wang Yaoqiang, Feng Yutao, Zhang Xiaoguang, et al.A new reaching law for antidisturbance sliding-mode control of PMSM speed regulation system[J]. IEEE Transactions on Power Electronics, 2020, 35(4): 4117-4126. [19] 王勃, 王天擎, 于泳, 等. 感应电机电流环非线性积分滑模控制策略[J]. 电工技术学报, 2021, 36(10): 2039-2048. Wang Bo, Wang Tianqing, Yu Yong, et al.Nonlinear integral sliding mode control strategy for current loop of induction motor drives[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2039-2048. [20] 原浩, 赵希梅. 基于积分滑模的永磁直线同步电动机直接推力控制[J]. 电工技术学报, 2019, 34(3): 483-488. Yuan Hao, Zhao Ximei.Direct thrust force control based on integral sliding mode for permanent magnet linear synchronous motor[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 483-488. [21] 朱进权, 葛琼璇, 孙鹏琨, 等. 基于自抗扰的高速磁浮列车牵引控制策略[J]. 电工技术学报, 2020, 35(5): 1065-1074. Zhu Jinquan, Ge Qiongxuan, Sun Pengkun, et al.Traction-system research of high-speed maglev based on active disturbance rejection control[J]. Transa- ctions of China Electrotechnical Society, 2020, 35(5): 1065-1074. [22] 高为炳. 变结构控制的理论及设计方法[M]. 北京: 科学出版社, 1996. [23] 王娟. 磁悬浮列车用长定子直线同步电机特性研究与故障分析[D]. 北京: 中国科学院电工研究所, 2004. |
|
|
|