|
|
An Estimation Method of Rechargeable Electric Quantity for Aging Battery Based on Joint Estimation of State and Model Parameters |
Sun Jinlei1, Tang Chuanyu1, Li Lei1, Zhu Jinda2, Zhu Chunbo3 |
1. School of Automation Nanjing University of Science and Technology Nanjing 210094 China; 2. State Grid Electric Power Research Institute Nanjing 211106 China; 3. School of Electrical Engineering & Automation Harbin Institute of Technology Harbin 150001 China |
|
|
Abstract Battery energy storage system has been widely used in power systems. In order to ensure the operation effect of the battery energy storage system, it is important to accurately estimate the battery state. The rechargeable electric quantity of the battery determines the ability of energy storage to a certain extent. However, it is difficult to accurately reflect the actual rechargeable electric quantity of the battery only using external characteristic parameters, such as voltage, current and temperature. The problem of the rechargeable electric quantity estimation of batteries in different health states has been difficult to solve, especially in different aging states. In this paper, the concept of rechargeable electric quantity is proposed, the relationship between the rechargeable electric quantity and the open circuit voltage (OCV) is constructed, and the rechargeable electric quantity affected by DC internal resistance is analyzed based on the Thevenin equivalent circuit model. Besides, a joint estimation method of battery states and model parameters is proposed based on dual adaptive dual extended Kalman filter (ADEKF), which realizes the rechargeable electric quantity estimation of the battery in any aging state. Taking three batteries with different aging states as the research object, the battery state and model parameter estimation results are verified in the federal urban driving schedule (FUDS) operating condition, and the estimation results of the rechargeable electric quantity loss are verified at 0.5C constant current charging. The experimental results show that for the new cell, the estimation error of the rechargeable electric quantity is less than 1%, and the error affected by DC internal resistance is 0.031A·h. For the aged cell, the estimation error of the rechargeable electric quantity is 2.7%, and the error affected by DC internal resistance is 0.074A·h. The comparison of the state estimation of three batteries with different aging states at 0.5C constant current charging condition further verifies the effectiveness of the proposed method for electric quantity estimation.
|
Received: 01 June 2021
|
|
|
|
|
[1] 桑顺, 高宁, 蔡旭, 等. 电池储能变换器弱电网运行控制与稳定性研究[J]. 中国电机工程学报, 2017, 37(1): 54-63. Sang Shun, Gao Ning, Cai Xu, et al.Operation control and stability study of converters for battery energy storage under weak grid conditions[J]. Pro- ceedings of the CSEE, 2017, 37(1): 54-63. [2] 王榘, 熊瑞, 穆浩. 温度和老化意识融合驱动的电动车辆锂离子动力电池电量和容量协同估计[J]. 电工技术学报, 2020, 35(23): 4980-4987. Wang Ju, Xiong Rui, Mu Hao.Co-estimation of lithium-ion battery state-of-charge and capacity through the temperature and aging awareness model for electric vehicles[J]. Transactions of China Electro- technical Society, 2020, 35(23): 4980-4987. [3] 陈欢, 林程, 熊瑞. 车用复合电源系统在线自适应能量管理[J]. 电工技术学报, 2020, 35(增刊2): 644-651, 660. Chen Huan, Lin Cheng, Xiong Rui.Online adaptive energy management strategy for a hybrid energy storage system in electric vehicles[J]. Transactions of China Electrotechnical Society, 2020, 35(S2): 644-651, 660. [4] 孙丙香, 任鹏博, 陈育哲, 等. 锂离子电池在不同区间下的衰退影响因素分析及任意区间的老化趋势预测[J]. 电工技术学报, 2021, 36(3): 666-674. Sun Bingxiang, Ren Pengbo, Chen Yuzhe, et al.Analysis of influencing factors of degradation under different interval stress and prediction of aging trend in any interval for lithium-ion battery[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 666-674. [5] 曹铭, 张越, 黄菊花. 基于RLS法的锂离子电池离线参数辨识[J]. 电池, 2020, 50(3): 228-231. Cao Ming, Zhang Yue, Huang Juhua.Offline para- meter identification of Li-ion battery based on RLS method[J]. Battery Bimonthly, 2020, 50(3): 228-231. [6] 黄凯, 郭永芳, 李志刚. 基于信息反馈粒子群的高精度锂离子电池模型参数辨识[J]. 电工技术学报, 2019, 34(增刊1): 378-387. Huang Kai, Guo Yongfang, Li Zhigang.High precision parameter identification of lithium-ion battery model based on feedback particle swarm optimization algorithm[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 378-387. [7] 刘楠, 吕甜, 叶望博, 等. 锂离子电容在线参数辨识与SOC的联合估计[J]. 电源技术, 2020, 44(5): 736-739, 748. Liu Nan, Lü Tian, Ye Wangbo, et al.Online parameter identification and SOC joint estimation of lithium-ion supercapacitors[J]. Chinese Journal of Power Sources, 2020, 44(5): 736-739, 748. [8] Xiong Rui, Sun Fengchun, Chen Zheng, et al.A data- driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium- ion polymer battery in electric vehicles[J]. Applied Energy, 2014, 113: 463-476. [9] 李宁, 何复兴, 马文涛, 等. 基于经验模态分解的门控循环单元神经网络的锂离子电池荷电状态估计[J]. 电工技术学报, 2022, 37(17): 4528-4536. Li Ning, He Fuxing, Ma Wentao, et al.State-of- charge estimation of lithium-ion battery based on gated recurrent unit using empirical mode decom- position[J]. Transactions of China Electrotechnical Society, 2022, 37(17): 4528-4536. [10] 武龙星, 庞辉, 晋佳敏, 等. 基于电化学模型的锂离子电池荷电状态估计方法综述[J]. 电工技术学报, 2022, 37(7): 1703-1725. Wu Longxing, Pang Hui, Jin Jiamin, et al.A review of SOC estimation methods for lithium-ion batteries based on electrochemical model[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1703-1725. [11] 林成涛, 陈全世, 王军平, 等. 用改进的安时计量法估计电动汽车动力电池SOC[J]. 清华大学学报(自然科学版), 2006, 46(2): 247-251. Lin Chengtao, Chen Quanshi, Wang Junping, et al.Improved Ah counting method for state of charge estimation of electric vehicle batteries[J]. Journal of Tsinghua University (Science and Technology), 2006, 46(2): 247-251. [12] He Hongwen, Xiong Rui, Guo Hongqiang.Online estimation of model parameters and state-of-charge of LiFePO4 batteries in electric vehicles[J]. Applied Energy, 2012, 89(1): 413-420. [13] Avila L O, Errecalde M L, Serra F M, et al.State of charge monitoring of Li-ion batteries for electric vehicles using GP filtering[J]. Journal of Energy Storage, 2019, 25: 100837. [14] Ye Min, Guo Hui, Xiong Rui, et al.A double-scale and adaptive particle filter-based online parameter and state of charge estimation method for lithium-ion batteries[J]. Energy, 2018, 144: 789-799. [15] 刘淑杰, 郝昆昆, 王永, 等. 基于改进粒子滤波算法的动力锂离子电池荷电状态估计[J]. 大连理工大学学报, 2020, 60(4): 392-401. Liu Shujie, Hao Kunkun, Wang Yong, et al.State of charge estimation of power lithium-ion battery based on improved particle filter algorithms[J]. Journal of Dalian University of Technology, 2020, 60(4): 392-401. [16] Dong Guangzhong, Chen Zonghai, Wei Jingwen.Sequential Monte Carlo filter for state-of-charge estimation of lithium-ion batteries based on auto regressive exogenous model[J]. IEEE Transactions on Industrial Electronics, 2019, 66(11): 8533-8544. [17] 巫春玲, 胡雯博, 孟锦豪, 等. 基于最大相关熵扩展卡尔曼滤波算法的锂离子电池荷电状态估计[J]. 电工技术学报, 2021, 36(24): 5165-5175. Wu Chunling, Hu Wenbo, Meng Jinhao, et al.State of charge estimation of lithium-ion batteries based on maximum correlation-entropy criterion extended Kalman filtering algorithm[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5165-5175. [18] Huang Deyang, Chen Ziqiang, Zheng Changwen, et al.A model-based state-of-charge estimation method for series-connected lithium-ion battery pack considering fast-varying cell temperature[J]. Energy, 2019, 185: 847-861. [19] 谈发明, 赵俊杰, 李秋烨. 基于简化滞回OCV模型的锂电池SOC自适应估计策略[J]. 中国电机工程学报, 2021, 41(2): 703-714. Tan Faming, Zhao Junjie, Li Qiuye.Adaptive SOC estimation strategy for lithium battery based on simplified hysteresis OCV model[J]. Proceedings of the CSEE, 2021, 41(2): 703-714. [20] 程泽, 杨磊, 孙幸勉. 基于自适应平方根无迹卡尔曼滤波算法的锂离子电池SOC和SOH估计[J]. 中国电机工程学报, 2018, 38(8): 2384-2393, 2548. Cheng Ze, Yang Lei, Sun Xingmian.State of charge and state of health estimation of Li-ion batteries based on adaptive square-root unscented Kalman filters[J]. Proceedings of the CSEE, 2018, 38(8): 2384-2393, 2548. [21] Sheng Hanmin, Xiao Jian.Electric vehicle state of charge estimation: nonlinear correlation and fuzzy support vector machine[J]. Journal of Power Sources, 2015, 281: 131-137. [22] 徐佳宁, 倪裕隆, 朱春波. 基于改进支持向量回归的锂电池剩余寿命预测[J]. 电工技术学报, 2021, 36(17): 3693-3704. Xu Jianing, Ni Yulong, Zhu Chunbo.Remaining useful life prediction for lithium-ion batteries based on improved support vector regression[J]. Transa- ctions of China Electrotechnical Society, 2021, 36(17): 3693-3704. [23] 李超然, 肖飞, 樊亚翔, 等. 基于深度学习的锂离子电池SOC和SOH联合估算[J]. 中国电机工程学报, 2021, 41(2): 681-691. Li Chaoran, Xiao Fei, Fan Yaxiang, et al.Joint estimation of the state of charge and the state of health based on deep learning for lithium-ion batteries[J]. Proceedings of the CSEE, 2021, 41(2): 681-691. [24] Zheng Yuejiu, Ouyang Minggao, Lu Languang, et al.On-line equalization for lithium-ion battery packs based on charging cell voltages: part 2. fuzzy logic equalization[J]. Journal of Power Sources, 2014, 247: 460-466. [25] Weng Caihao, Cui Yujia, Sun Jing, et al.On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regression[J]. Journal of Power Sources, 2013, 235: 36-44. [26] Zenati A, Desprez P, Razik H.Estimation of the SOC and the SOH of Li-ion batteries, by combining impedance measurements with the fuzzy logic inference[C]//IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, USA, 2010: 1773-1778. [27] Zheng Linfeng, Zhu Jianguo, Lu D D C, et al. Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries[J]. Energy, 2018, 150: 759-769. [28] Stroe D I, Schaltz E.Lithium-ion battery state- of-health estimation using the incremental capacity analysis technique[J]. IEEE Transactions on Industry Applications, 2020, 56(1): 678-685. [29] 纪常伟, 潘帅, 汪硕峰, 等. 动力锂离子电池老化速率影响因素的实验研究[J]. 北京工业大学学报, 2020, 46(11): 1272-1282. Ji Changwei, Pan Shuai, Wang Shuofeng, et al.Experimental study on effect factors of aging rate for power lithium-ion batteries[J]. Journal of Beijing University of Technology, 2020, 46(11): 1272-1282. [30] Yang Jufeng, Xia Bing, Shang Yunlong, et al.Adaptive state-of-charge estimation based on a split battery model for electric vehicle applications[J]. IEEE Transactions on Vehicular Technology, 2017, 66(12): 10889-10898. |
|
|
|