|
|
Multi-Energy Load Forecasting in Integrated Energy System Based on ResNet-LSTM Network and Attention Mechanism |
Wang Chen1, Wang Ying1, Zheng Tao2,3, Dai Zemei2,3, Zhang Kaifeng1 |
1. Key Laboratory of Measurement and Control of Complex Systems of Engineering Ministry of Education Southeast University Nanjing 210096 China; 2. NARI Group (State Grid Electric Power Research Institute) Co. Ltd Nanjing 211106 China; 3. NARI Technology Development Co. Ltd Nanjing 211106 China |
|
|
Abstract In an integrated energy system, different types of loads, i.e. electrical loads, heat loads, cooling loads, might have complex and strong coupling relationships among them. Compared with forecasting each type of load separately, to forecast multi-energy loads together in a combined multi-task model can further explore the internal connections and therefore improve the accuracy of forecasting. A multi-task learning model based on ResNet-LSTM network and Attention mechanism is proposed to fit the spatial coupling relationship and time coupling relationship between multi-energy loads. Firstly, the multi-layer ResNet is used as the feature extraction unit of the multi-energy load data to mine the spatial coupling interaction characteristics between the multi-energy; secondly, the LSTM residual structure is used to further mine the time series characteristics of the multi-energy loads data; then, the Attention mechanism is used to realize that multiple subtasks have different degrees of attention to shared features, which reflects the differentiated selection of shared features by different subtasks, and realizes joint forecasting of multiple loads. Finally, we applied the proposed method with the data at the Campus Metabolism system of Arizona State University. Compared with other forecasting models, the results show that the proposed method has higher accuracy.
|
Received: 19 February 2021
|
|
|
|
|
[1] 刁涵彬, 李培强, 吕小秀, 等. 考虑多元储能差异性的区域综合能源系统储能协同优化配置[J]. 电工技术学报, 2021, 36(1): 151-165. Diao Hanbin, Li Peiqiang, Lü Xiaoxiu, et al.Coordinated optimal allocation of energy storage in regional integrated energy system considering the diversity of multi-energy storage[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 151-165. [2] 刘小龙, 李欣然, 刘志谱, 等. 基于负荷重要性和源-荷互补性的离网系统终端电/热/冷负荷投切策略[J]. 电工技术学报, 2021, 36(3): 552-564. Liu Xiaolong, Li Xinran, Liu Zhipu, et al.Research on power/heating/cooling load switching strategy of off-grid system based on load importance and source load complementarity[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 552-564. [3] 邓带雨, 李坚, 张真源, 等. 基于EEMD-GRU-MLR的短期电力负荷预测[J]. 电网技术, 2020, 44(2): 593-602. Deng Daiyu, Li Jian, Zhang Zhenyuan, et al.Short-term electric load forecasting based on EEMD-GRU-MLR[J]. Power System Technology, 2020, 44(2): 593-602. [4] 梁荣, 王洪涛, 吴奎华, 等. 基于神经网络和ARIMA模型的冷热电短期负荷预测[J]. 电力系统及其自动化学报, 2019, 32(3): 52-58. Liang Rong, Wang Hongtao, Wu Kuihua, et al.Short-term forecasting of cooling, heating and power loads based on neural network and ARIMA model[J]. Proceedings of the CSU-EPSA, 2019, 32(3): 52-58. [5] 罗敏, 程将南, 王毅, 等. 基于小波去噪和决策树的个性化大用户负荷预测[J]. 南方电网技术, 2016, 10(10): 37-42. Luo Min, Cheng Jiangnan, Wang Yi, et al.Wavelet de-noising and decision tree based load forecasting of large consumers[J]. Southern Power System Technology, 2016, 10(10): 37-42. [6] 李焱, 贾雅君, 李磊, 等. 基于随机森林算法的短期电力负荷预测[J]. 电力系统保护与控制, 2020, 48(21): 117-124. Li Yan, Jia Yajun, Li Lei, et al.Short term power load forecasting based on a stochastic forest algorithm[J]. Power System Protection and Control, 2020, 48(21): 117-124. [7] 赵佩, 代业明. 基于实时电价和加权灰色关联投影的SVM电力负荷预测[J]. 电网技术, 2020, 44(4): 1325-1332. Zhao Pei, Dai Yeming.Power load forecasting of SVM based on real-time price and weighted grey relational projection algorithm[J]. Power System Technology, 2020, 44(4): 1325-1332. [8] Kavousi-Fard A, Samet H, Marzbani F.A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting[J]. Expert Systems with Applications, 2014, 41(13): 6047-6056. [9] 温锦斌, 王昕, 李立学, 等. 基于频域分解的短期风电负荷预测[J]. 电工技术学报, 2013, 28(5): 66-72. Wen Jinbin, Wang Xin, Li Lixue, et al.Short-term wind power load forecasting based on frequency domain decomposition[J]. Transactions of China Electrotechnical Society, 2013, 28(5): 66-72. [10] 杨龙, 吴红斌, 丁明, 等. 新能源电网中考虑特征选择的Bi-LSTM网络短期负荷预测[J]. 电力系统自动化, 2021, 45(3): 166-173. Yang Long, Wu Hongbin, Ding Ming, et al.Short-term load forecasting in renewable energy grid based on bi-directional long short-term memory network considering feature selection[J]. Automation of Electric Power Systems, 2021, 45(3): 166-173. [11] 谷云东, 张素杰, 冯君淑. 大用户电力负荷的多模型模糊综合预测[J]. 电工技术学报, 2015, 30(23): 110-115. Gu Yundong, Zhang Sujie, Feng Junshu.Multi-model fuzzy synthesis forecasting of electric power loads for larger consumers[J]. Transactions of China Electrotechnical Society, 2015, 30(23): 110-115. [12] 祝学昌. 基于IFOA-GRNN的短期电力负荷预测方法研究[J]. 电力系统保护与控制, 2020, 48(9): 121-127. Zhu Xuechang.Research on short-term power load forecasting method based on IFOA-GRNN[J]. Power System Protection and Control, 2020, 48(9): 121-127. [13] 刘念, 张清鑫, 刘海涛. 基于核函数极限学习机的微电网短期负荷预测方法[J]. 电工技术学报, 2015, 30(8): 218-224. Liu Nian, Zhang Qingxin, Liu Haitao.Online short-term load forecasting based on ELM with kernel algorithm in micro-grid environment[J]. Transactions of China Electrotechnical Society, 2015, 30(8): 218-224. [14] 朱清智, 董泽, 马宁. 基于即时学习算法的短期负荷预测方法[J]. 电力系统保护与控制, 2020, 48(7): 92-98. Zhu Qingzhi, Dong Ze, Ma Ning.Forecasting of short-term power based on just-in-time learning[J]. Power System Protection and Control, 2020, 48(7): 92-98. [15] 彭文, 王金睿, 尹山青. 电力市场中基于Attention-LSTM的短期负荷预测模型[J]. 电网技术, 2019, 43(5): 1745-1751. Peng Wen, Wang Jinrui, Yin Shanqing.Short-term load forecasting model based on Attention-LSTM in electricity market[J]. Power System Technology, 2019, 43(5): 1745-1751. [16] Al-Rakhami M, Gumaei A, Alsanad A, et al.An ensemble learning approach for accurate energy load prediction in residential buildings[J]. IEEE Access, 2019, 7: 48328-48338. [17] Mokeev V V.Prediction of heating load and cooling load of buildings using neural network[C]//2019 International Ural Conference on Electrical Power Engineering (UralCon), IEEE, 2019: 417-421. [18] Zhang Tieyan, Li Hening, Hui Qian, et al.Integrated load forecasting model of multi-energy system based on Markov chain improved neural network[C]//2019 11th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), IEEE, Qiqihar, China, 2019: 454-457. [19] Hai Wenlong, Wang Yahui.Load forecast of gas region based on ARIMA algorithm[C]//2020 Chinese Control and Decision Conference (CCDC), IEEE, Hefei, China, 2020: 1960-1965. [20] Wei Nan, Li Changjun, Duan Jiehao, et al.Daily natural gas load forecasting based on a hybrid deep learning model[J]. Energies, 2019, 12(2): 218. [21] Lu Hongfang, Azimi M, Iseley T.Short-term load forecasting of urban gas using a hybrid model based on improved fruit fly optimization algorithm and support vector machine[J]. Energy Reports, 2019, 5: 666-677. [22] Li Yujie, Yuan Xiaoling, Xu Jieyan, et al.Medium-term forecasting of cold, electric and gas load in multi-energy system based on VAR model[C]//2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), IEEE, Wuhan, China, 2018: 1676-1680. [23] Tang Yu, Liu Haoming, Xie Yunfei, et al.Short-term forecasting of electricity and gas demand in multi-energy system based on RBF-NN model[C]//2019 IEEE International Conference on Energy Internet (ICEI), IEEE, Nanjing, China, 2019: 542-547. [24] 陈锦鹏, 胡志坚, 陈纬楠, 等. 二次模态分解组合DBiLSTM-MLR的综合能源系统负荷预测[J]. 电力系统自动化, 2021, 45(13): 85-94. Chen Jinpeng,Hu Zhijian,Chen Weinan, et al.Load prediction of integrated energy system based on quadratic modal decomposition and DBiLSTM-MLR[J]. Automation of Electric Power Systems, 2021, 45(13): 85-94. [25] 史佳琪, 谭涛, 郭经, 等. 基于深度结构多任务学习的园区型综合能源系统多元负荷预测[J]. 电网技术, 2018, 42(3): 698-707. Shi Jiaqi, Tan Tao, Guo Jing, et al.Multi-task learning based on deep architecture for various types of load forecasting in regional energy system integration[J]. Power System Technology, 2018, 42(3): 698-707. [26] 孙庆凯, 王小君, 张义志, 等. 基于LSTM和多任务学习的综合能源系统多元负荷预测[J]. 电力系统自动化, 2021, 45(5): 63-70. Sun Qingkai, Wang Xiaojun, Zhang Yizhi, et al.Multiple load prediction of integrated energy system based on long short-term memory and multi-task learning[J]. Automation of Electric Power Systems, 2021, 45(5): 63-70. [27] 田浩含, 张智晟, 于道林. 基于改进LSTM的区域综合能源系统多元负荷短期预测研究[J]. 电力系统及其自动化学报, 2021, 33(9): 130-137. Tian Haohan, Zhang Zhisheng, Yu Daolin.Load short-term forecasting model of regional integrated energy system based on improved LSTM[J]. Proceedings of the CSU-EPSA, 2021, 33(9): 130-137. [28] 吴润泽, 包正睿, 王文韬, 等. Hadoop架构下基于模式匹配的短期电力负荷预测方法[J]. 电工技术学报, 2018, 33(7): 1542-1551. Wu Runze, Bao Zhengrui, Wang Wentao, et al.Short-term power load forecasting method based on pattern matching in Hadoop framework[J]. Transactions of China Electrotechnical Society, 2018, 33(7): 1542-1551. [29] 李滨, 黄佳, 吴茵, 等. 基于气象信息粒还原的台风分时段短期负荷预测[J]. 电工技术学报, 2018, 33(9): 2068-2076. Li Bin, Huang Jia, Wu Yin, et al.Typhoon-period short term load forecasting based on particle reduction of weather information[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 2068-2076. [30] 马然, 栗文义, 齐咏生. 风电机组健康状态预测中异常数据在线清洗[J]. 电工技术学报, 2021, 36(10): 2127-2139. Ma Ran, Li Wenyi, Qi Yongsheng.Online cleaning of abnormal data for the prediction of wind turbine health condition[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2127-2139. [31] 王方雨, 刘文颖, 陈鑫鑫, 等. 基于“秩和”近似相等特性的同期线损异常数据辨识方法[J]. 电工技术学报, 2020, 35(22): 4771-4783. Wang Fangyu, Liu Wenying, Chen Xinxin, et al.Abnormal data identification of synchronous line loss based on the approximate equality of rank sum[J]. Transactions of China Electrotechnical Society, 2020, 35(22): 4771-4783. |
|
|
|