[1] Palroer S, Sharpley W A.Electric strength of transformer insulation[J]. Proceedings of the Institution of Electrical Engineers, 1969, 116(4): 2029-2037.
[2] Gallagher T J.Simple dielectric liquids: mobility, conduction and breakdown[M]. Oxford: Clarendon Press, 1975.
[3] Abgrall F, Cardon J M.Influence of solid impurities on the electric strength of transformer oil[C]//5th International Conference on Conduction and Breakdown in Dielectric Liquids, Netherlands, 1975: 1-4.
[4] 董明, 杨凯歌, 马馨逸, 等. 纳米改性变压器油中载流子输运特性分析[J]. 电工技术学报, 2020, 35(21): 4598-4608.
Dong Ming, Yang Kaige, Ma Xinyi, et al. Analysis of charge-carrier transport characteristics of transformer oil-based nanofluids[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4598-4608.
[5] 李兴, 张桂贤.500 kV变压器油颗粒度的试验分析[J]. 变压器, 2009, 46(6): 40-43.
Li Xing, Zhang Guixian.Test and analysis of 500 kV transformer oil particle size[J]. Transformer, 2009, 46(6): 40-43.
[6] 廖瑞金, 郝建, 杨丽君, 等. 变压器油纸绝缘热老化过程中铜类产物生成规律及其危害[J]. 电工技术学报, 2012, 27(10): 52-59.
Liao Ruijin, Hao Jian, Yang Lijun, et al. The formation and damage of copper products during the thermal aging of transformer oil-paper insulation[J]. Transactions of China Electrotechnical Society, 2012, 27(10): 52-59.
[7] 彭磊, 付强, 李丽, 等. 热老化下油中绝缘纸纤维颗粒脱落规律研究[J]. 高电压技术, 2020, 46(5): 1622-1630.
Peng Lei, Fu Qiang, Li Li, et al. Abscission law of fiber particles of insulating paper under thermal ageing[J]. High Voltage Engineering, 2020, 46(5): 1622-1630.
[8] 董忍娥.绝缘油质劣化对有载分接开关的影响[J]. 变压器, 2009, 46(8): 50-53.
Dong Rene.Influence of deterioration of insulating oil to on-load tap-changer[J]. Transformer, 2009, 46(8): 50-53.
[9] 李清, 杨东凯.变压器油中机械杂质颗粒分布情况试验研究[J]. 华中电力, 1999, 12(1): 27-29.
Li Qing, Yang Dongkai.Distribution study of mechanical impurity particles in transformer oil[J]. Central China Electric Power, 1999, 12(1): 27-29.
[10] 张永泽, 唐炬, 潘成, 等. 温度对流动变压器油中悬移气泡局部放电特性的影响与作用机制[J]. 电工技术学报, 2020, 35(6): 1357-1367.
Zhang Yongze, Tang Ju, Pan Cheng, et al. Effects of temperature on partial discharge characteristics induced by suspended bubbles in flowing transformer oil and the mechanism[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1357-1367.
[11] 沈谅平.纳米改性变压器油的制备及其特性研究[D]. 武汉: 华中科技大学, 2012.
[12] Sakai K, Tsuru S, Abella D L, et al. Conducting particle motion and particle-initiated breakdown in dc electric field between diverging conducting plates in atmospheric air[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1999, 6(1): 122-130.
[13] Jones T B.Multipole corrections to dielectrophoretic force[J]. IEEE Transactions on Industry Applications, 1985, 21(4): 930-934.
[14] Talbot L, Cheng R K, Schefer R W, et al. Thermophoresis of particles in a heated boundary layer[J]. Journal of Fluid Mechanics, 1980, 101(4): 737-758.
[15] Clift R, Gauvin W H.Motion of entrained particles in gas streams[J]. The Canadian Journal of Chemical Engineering, 1971, 49(8): 439-448.
[16] Morsi S A, Alexander A J.An investigation of particle trajectories in two-phase flow systems[J]. Journal of Fluid Mechanics, 1972, 55(2): 193-208.
[17] Haider A, Levenspiel O.Drag coefficient and terminal velocity of spherical and nonspherical particles[J]. Powder Technology, 1989, 58(1): 63-70.
[18] Odar F, Hamilton W S.Forces on a sphere accelerating in a viscous fluid[J]. Journal of Fluid Mechanics, 1964, 18(2): 302-314.
[19] Anderson T B, Jackson R.A fluid mechanical description of fluidized beds[J]. Industrial & Engineering Chemistry Fundamentals, 1967, 6(4): 527-539.
[20] Reeks M W, Mckee S.The dispersive effects of basset history forces on particle motion in a turbulent flow[J]. Physics of Fluids, 1984, 27(7): 1573-1582.
[21] Rubinow S I, Keller J.The transverse force on a spinning sphere moving in a viscous fluid[J]. Fluid Mechanics, 1961, 11(2): 447-459.
[22] Saffman P G.The lift on a small sphere in a slow shear flow[J]. Journal of Fluid Mechanics Digital Archive, 1965, 22(2): 385-400.
[23] 贾江波, 陶风波, 杨兰均, 等. GIS中不均匀直流电场下球状自由导电微粒运动分析[J]. 中国电机工程学报, 2006, 26(8): 106-111.
Jia Jiangbo, Tao Fengbo, Yang Lanjun, et al. Motion analysis of spherical free conducting particle in non-uniform electric field of GIS under DC voltage[J]. Proceedings of the CSEE, 2006, 26(8): 106-111.
[24] 程涵, 魏威, 孙优良, 等. 直流GIL中线形金属微粒电动力学行为研究[J]. 电工技术学报, 2021, 36(24): 5283-5293.
Chen Han, Wei Wei, Sun Youliang, et al. Study on the electrodynamic behavior of linear metal particles in DC GIL[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5283-5293.
[25] Hara M, Akazaki M.A method for prediction of gaseous discharge threshold voltage in the presence of a conducting particle[J]. Journal of Electrostatics, 1977, 2(3): 223-239.
[26] Lebedev N N, Skal′skaya I P.Force acting on a conducting sphere in the field of a parallel plane condenser[J]. Soviet Physics Technical Physics, 1962, 7: 268-270.
[27] 麻守孝.绝缘油中金属颗粒在流动状态下产生的局部放电特性及影响因素研究[D]. 重庆: 重庆大学, 2016.
[28] 冯国敬.介电泳驱动球形粒子的运动速度及其影响因素研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
[29] Morgan H, Green N G.AC electrokinetics: colloids and nanoparticles[M]. England: Research Studies Press LTD, 2003.
[30] Sauer F A, Schlogl R W, Chiabrera A, et al. Interactions between electromagnetic fields and cells[M]. New York: Plenum Press, 1985.
[31] Wang Xujing, Xiao Bo, Gascoyne Peter R C.General expressions for dielectrophoretic force and electrorotational torque derived using the maxwell stress tensor method[J]. Journal of Electrostatics, 1997, 39(4): 277-295.
[32] 普子恒, 王子鸣, 史星涛, 等. 直流电压下燃烧颗粒在间隙中的运动和分布规律[J]. 电工技术学报, 2020, 35(2): 612-619.
Pu Ziheng, Wang Ziming, Shi Xingtao, et al. Motion and distribution of combustion particles in flame gap under DC voltage[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 612-619.
[33] 薛元, 姚强, 彭晓峰, 等. 超细颗粒所受热泳力的机理研究综述[C]//中国工程热物理学会传热传质学学术会议论文集, 青岛, 2001: 469-473.
[34] 周涛, 杨瑞昌, 张记刚, 等. 矩形管边界层内亚微米颗粒运动热泳规律的实验研究[J]. 中国电机工程学报, 2010, 30(2): 92-97.
Zhou Tao, Yang Ruichang, Zhang Jigang, et al. Experimental study on the thermophoresis movement of submicron particle in the boundary layer of the rectangular pipe[J]. Proceedings of the CSEE, 2010, 30(2): 92-97.
[35] 薛元.细颗粒在流动与温度边界层中的运动规律研究[D]. 北京: 清华大学, 2002.
[36] Liu Dayou.Fluid dynamics of two-phase systems[M]. Beijing: Higher Education Press, 1993.
[37] Gidaspow D.Multiphase flow and fluidization- continuum and kinetic theory descriptions[M]. New York: Academic Press, 1994.
[38] 范维澄.湍流的双流体模型及其改进[J]. 中国科学, 1987(7): 704-710.
Fan Weicheng.Two-fluid model of turbulence and its improvement[J]. China Science, 1987(7): 704-710.
[39] 刘永兵, 陈纪忠, 阳永荣.管道内液固浆液输送的数值模拟[J]. 浙江大学学报: 工学版, 2006, 40(5): 858-863.
Liu Yongbing, Chen Jizhong, Yang Yongrong.Numerical simulation of liquid-solid two-phase flow in slurry pipeline transportation[J]. Journal of Zhejiang University(Engineering Science), 2006, 40(5): 858-863.
[40] Newitt D M, Richardson J F, Abbot M, et al. Hydraulic conveying of solids in horizontal pipes[J]. Transactions of the Institute of Chemical Engineers, 1955, 33: 93-113.
[41] Skudarnov P V, Kang H J, Lin C X, et al. Experimental investigation of single and double species slurry transportation in a horizontal pipeline[C]//Process ANS 9th International Topical Meeting on Robotics and Remote System, Seattle, 2001: 1-8.
[42] Hernandez-Jimenez F, Sanchez-Delgado S, Gomez-Garcia A, et al. Comparison between two-fluid model simulations and particle image analysis & velocimetry(PIV) results for a two-dimensional gas-solid fluidized bed[J]. Chemical Engineering Science, 2011, 66(17): 3753-3772.
[43] 张政, 谢灼利.流体-固体两相流的数值模拟[J]. 化工学报, 2001, 52(1): 1-12.
Zhang Zheng, Xie Zhuoli.Numerical simulation of fluid-solid two phase flows[J]. Journal of Chemical Industry, 2001, 52(1): 1-12.
[44] Cundall P A, Strack O D L.A discrete numerical mode for granular assemblies[J]. Geotechnique, 1979, 29(1): 47-65.
[45] Oda M.A mechanical and statistical model of granular material[J]. Soils and Foundations, 1974, 14(1): 13-27.
[46] Campbell C S, Brennen C E.Computer simulation of granular shear flows[J]. Journal of Fluid Mechanics, 1985, 151: 167-188.
[47] 张欣, 王文庆, 武锦涛, 等. 颗粒流动模型研究进展[J]. 中国粉体技术, 2007, 13(6): 36-40.
Zhang Xin, Wang Wenqing, Wu Jintao, et al. Progress in model for particle flow[J]. China Powder Science and Technology, 2007, 13(6): 36-40.
[48] 孙秋芹, 罗宸江, 王峰, 等. 直流GIL导体表面金属颗粒跳跃运动特性研究[J]. 电工技术学报, 2018, 33(22): 5206-5215.
Sun Qiuqin, Luo Chenjiang, Wang Feng, et al. Jumping characteristics of metal particle on the surface of DC gas insulated transmission line conductor[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5206-5215.
[49] 刘诗文.颗粒解析的复杂液固两相流模拟研究[D]. 北京: 中国科学院大学, 2019.
[50] Hoomans B P B, Kuipers J A M, Briels W J, et al. Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: A hard-sphere approach[J]. Chemical Engineering Science, 1996, 51(1): 99-118.
[51] Tsuji Y, Kawaguchi T, Tanaka T.Discrete particle simulation of two-dimensional fluidized bed[J]. Powder Technology, 1993, 77(1): 79-87.
[52] 刘欢鹏, 刘文铁, 陆慧林, 等. 直接模拟蒙特卡罗方法研究循环流化床内颗粒聚团的流动[J]. 过程工程学报, 2004, 4(8): 645-650.
Liu Huanpeng, Liu Wentie, Lu Huilin, et al. Clusters flow in circulating fluidized bed simulated by direct simulation monte carlo approach[J]. The Chinese Journal of Process Engineering, 2004, 4(8): 645-650.
[53] 曾非同, 关向雨, 黄以政, 等. 基于多尺度多物理场的油浸式变压器流动-传热数值研究[J]. 电工技术学报, 2020, 35(16): 3436-3444.
Zeng Feitong, Guan Xiangyu, Huang Yizheng, et al. Numerical study on flow-heat transfer of oil-immersed transformer based on multiple-scale and multiple-physical fields[J]. Transactions of China Electrotechnical Society, 2020, 35(16): 3436-3444.
[54] 谭骏华.气固流化床内流动特性和颗粒曳力的直接数值模拟研究[D]. 杭州: 浙江大学, 2017.
[55] 但敏, 郝建, 廖瑞金, 等. 直流电压下矿物油和天然酯中纤维颗粒运动及成桥特性的差异[J]. 电网技术, 2018, 42(2): 665-672.
Dan Min, Hao Jian, Liao Ruijin, et al. Different motion and bridging characteristics of fiber particles in mineral oil and natural ester under DC voltage[J]. Power System Technology, 2018, 42(2): 665-672.
[56] 王有元, 李熙, 李原龙, 等. 交直流复合电压下铜颗粒在油中的分布及对绝缘油击穿特性的影响[J]. 电工技术学报, 2018, 33(23): 5581-5590.
Wang Youyuan, Li Xi, Li Yuanlong, et al. Distribution of copper particle in insulating oil and its influence on breakdown strength of insulating oil under combined AC and DC voltage[J]. Transactions of China Electrotechnical Society, 2018, 33(23): 5581-5590.
[57] 赵涛, 律方成, 刘云鹏, 等. 纤维素颗粒物对变压器油冲击击穿特性影响的试验研究[J]. 电工技术学报, 2018, 33(7): 1626-1633.
Zhao Tao, Lü Fangcheng, Liu Yunpeng, et al. Experimental study of cellulose particles effect on impulse breakdown in transformer oil[J]. Transactions of China Electrotechnical Society, 2018, 33(7): 1626-1633.
[58] Tsuji Y, Morikawa Y, Shiomi H.LDV measurements of an air-solid two-phase flow in a vertical pipe[J]. Journal of Fluid Mechanics, 1984, 139(2): 417-434.
[59] 徐俊, 杜彩虹, 王甜, 等. 180°矩形弯管流场的LDV测量[J]. 实验流体力学, 2010, 24(1): 36-41.
Xu Jun, Du Caihong, Wang Tian, et al. Experimental measurement of flow field in 180°curved duct with rectangular cross-section by LDV[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1): 36-41.
[60] 刘青泉.水-沙两相流的激光多普勒分相测量和试验研究[J]. 泥沙研究, 1998, 9(2): 72-80.
Liu Qingquan.LDV measurments and experimental study of water and sediment two-phase flow[J]. Journal of Sediment Research, 1998, 9(2): 72-80.
[61] 吕清刚, 杨涛, 潘忠刚.用激光相位多普勒技术测量循环流化床中的颗粒运动特性[J]. 工程热物理学报, 1995, 16(2): 249-252.
Lü Qinggang, Yang Tao, Pan Zhonggang.Measurements of particle dynamics in circulating fluidized bed installation using laser phase doppler particle analyzer[J]. Journal of Engineering Thermophysics, 1995, 16(2): 249-252.
[62] 王勤辉, 赵晓东, 石惠娴, 等. 循环流化床内颗粒运动的PIV测试[J]. 热能动力工程, 2003, 18(4): 378-381.
Wang Qinhui, Zhao Xiaodong, Shi Huixian, et al. PIV test of particle movement in circulating fluidized bed[J]. Journal of Engineering for Thermal Energy and Power, 2003, 18(4): 378-381.
[63] 饶江, 葛满初, 徐建中, 等. 平直通道内固体粒子扩散的实验研究[J]. 工程热物理学报, 2001, 22(增刊): 193-196.
Rao Jiang, Ge Manchu, Xu Jianzhong, et al. Experimental and numerical examination on solid particle diffusion in a horizontal flow section[J]. Journal of Engineering Thermophysics, 2001, 22(S): 193-196.
[64] Lindken R, Merzkirch W.A novel PIV technique for measurements in multiphase flows and its application to two-phase bubbly flows[J]. Experiments in Fluids, 2002, 33(6): 814-825.
[65] 王丽燕, 孙志强, 周天, 等. 基于PIV图像处理法的管内低浓度液固两相流颗粒运动特性研究[J]. 工程热物理学报, 2018, 39(9): 1970-1978.
Wang Liyan, Sun Zhiqiang, Zhou Tian, et al. Flow characteristics of particles in liquid-solid two-phase flow in pipes at low solid volume fractions using PIV[J]. Journal of Engineering Thermophysics, 2018, 39(9): 1970-1978.
[66] Birlasekaran S.The measurement of charge on single particles in transformer oil[J]. IEEE Transactions on Electrical Insulation, 1991, 26(6): 1094-1103.
[67] Birlasekaran S.The movement of a conducting particle in transformer oil in AC fields[J]. IEEE Transactions on Electrical Insulation, 1993, 28(1): 9-17.
[68] Dascalescu L, Mihailescu M, Tobazeon R.Modeling of conductive particle behavior in insulating fluids affected by DC electric fields[J]. IEEE Transactions on Industry Applications, 1998, 34(1): 1782-1788.
[69] Asano K, Anno K, Higashiyama Y.The behavior of charged conducting particles in electric fields[J]. IEEE Transactions on Industry Applications, 1997, 33(3): 679-686.
[70] Mahmud S, Chen G, Golosnoy I O, et al. Bridging in contaminated transformer oil under DC and AC electric field[J]. Journal of Physics Conference Series, 2013, 472(1): 1-6.
[71] Zainuddin H, Zainoddin M H S, Aman A.Investigation of bridging phenomena in ester oils contaminated with cellulose particles[C]//International Conference on Power, Energy and Communication Systems (IPECS), Perlis, Malaysia, 2015: 408-413.
[72] Tang Ju, Ma Shouxiao, Zhang Mingjun, et al. Motion characteristics of a charged metal particle in insulating oil under flow state[J]. IEEJ Transactions on Electrical & Electronic Engineering, 2017, 12(4): 484-490.
[73] Li Bonan, Huang Leifeng, Wang Youyuan, et al. Experimental study on the motion law of solid particles in oil under electric field[C]//2019 IEEE 20th International Conference on Dielectric Liquids (ICDL), Italy, 2019, DOI:10.1109/ICDL.2019.8796609.
[74] 王淑娟, 时璟丽, 王景春, 等. 变压器油中大颗粒杂质对油局部放电的影响[J]. 高电压技术, 1994, 20(4): 26-29.
Wang Shujuan, Shi Jingli, Wang Jingchun, et al. The effect of a macro-particle in the partial discharge property of transformer oil[J]. High Voltage Engineering, 1994, 20(4): 26-29.
[75] 王淑娟, 时璟丽, 王景春, 等. 500kV电力变压器中杂质颗粒对油电气性能影响[J]. 华北电力大学学报: 自然科学版, 1995, 22(3): 24-28.
Wang Shujuan, Shi Jingli, Wang Jingchun, et al. The study of the effect of impurity particles on electric characteristics in 500kV power transformer oil[J]. Journal of North China Electric Power University (Natural Science Edition), 1995, 22(3): 24-28.
[76] 付守海, 王景春, 王淑娟, 等. 大颗粒携带电荷及其对变压器油局部放电的影响[J]. 高电压技术, 2000, 26(1): 49-53.
Fu Shouhai, Wang Jingchun, Wang Shujuan, et al. The acquired charge of macro-particle and its effect on the partial discharge of transformer oil[J]. High Voltage Engineering, 2000, 26(1): 49-53.
[77] 陈彬, 韩超, 刘阁.颗粒污染物对变压器油粘度的影响[J]. 化学研究与应用, 2017, 29(10): 1552-1557.
Chen Bin, Han Chao, Liu Ge.Research on the influence of particle pollution on viscosity of transformer oil[J]. Chemical Research and Application, 2017, 29(10): 1552-1557.
[78] 陈彬, 韩超, 刘阁.颗粒污染物对变压器油介质损耗因数的影响[J]. 石油学报(石油加工), 2017, 33(1): 182-188.
Chen Bin, Han Chao, Liu Ge.The influence of particle pollution on dielectric dissipation factor of transformer oil[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2017, 33(1): 182-188.
[79] 陈彬, 韩超, 刘阁.颗粒污染物对变压器油氧化安定性的影响[J]. 高电压技术, 2017, 43(8): 2566-2573.
Chen Bin, Han Chao, Liu Ge.Influence of particle pollution on oxidation stability of transformer oil[J]. High Voltage Engineering, 2017, 43(8): 2566-2573.
[80] 陈彬, 韩超, 刘阁, 等. 颗粒物对变压器油表面张力的影响研究[J]. 应用力学学报, 2018, 35(1): 191-196.
Chen Bin, Han Chao, Liu Ge, et al. study on the surface tension of transformer oil containing particulate matter[J]. Chinese Journal of Applied Mechanics, 2018, 35(1): 191-196.
[81] 陈彬, 韩超, 刘阁.颗粒污染物对变压器油击穿电压的影响[J]. 高电压技术, 2018, 44(12): 3903-3909.
Chen Bin, Han Chao, Liu Ge.Effect of particulate contamination on breakdown voltage of transformer oil[J]. High Voltage Engineering, 2018, 44(12): 3903-3909.
[82] 郝建, 但敏, 廖瑞金, 等. 颗粒属性对矿物绝缘油直流击穿特性的影响差异及原因分析[J]. 电工技术学报, 2019, 34(24): 5270-5281.
Hao Jian, Dan Min, Liao Ruijin, et al. Influence of particle properties on DC breakdown characteristics of mineral oil and its difference reason analysis[J]. Transactions of China Electrotechnical Society, 2019, 34(24): 5270-5281.
[83] Li Junhao, Hu Quanwei, Zhao Xuefeng, et al. Partial-discharge characteristics of free spherical conducting particles under AC condition in transformer oils[J]. IEEE Transactions on Power Delivery, 2011, 26(2): 538-546.
[84] Sarathi R, Reid A J, Judd M D.Partial discharge study in transformer oil due to particle movement under DC voltage using the uhf technique[J]. Electric Power Systems Research, 2008, 78(11): 1819-1825. |