|
|
Application and Performance Comparison of Global Optimization Algorithms in the Parameter Identification Problems of the Preisach Hysteresis Model |
Chen Long1,2,3, Yi Qiongyang1,3, Ben Tong1,3, Zhang Zeyu1,3, Wang Youhua2 |
1. Hubei Provincial Engineering Technology Research Center for Power Transmission Line China Three Gorges University Yichang 443002 China; 2. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China; 3. College of Electrical Engineering and New Energy China Three Gorges University Yichang 443002 China |
|
|
Abstract The rapid identification of the Preisach model parameters is of great significance to realize the finite element calculation of electrical equipment considering the hysteresis characteristics. Combined the explicit Everett function with the Preisach model, this paper proposes a parameter identification method based on an improved velocity-controlled particle swarm optimization algorithm, and compares the efficiency of the global optimization algorithm. Firstly, a parameterized explicit expression of the Everett function is constructed to solve the problem that low computational efficiency of the traditional discrete Preisach model as the storage of Everett matrix is huge. Secondly, a parameter identification method of the Preisach model based on the improved velocity-controlled particle swarm optimization algorithm is proposed. Based on the measured quasi-static hysteresis loops of silicon steel sheet, the parameters of the Preisach model are identified. Finally, the simulated annealing algorithm, genetic algorithm, and the algorithm proposed in this paper are compared and analyzed in terms of the iterations number and calculation time, the accuracy of hysteresis loop simulation, and the success rate of Parameter identification. The results show that the improved velocity-controlled particle swarm optimization algorithm proposed in this paper has high identification accuracy, fast convergence speed, and high success rate in identifying the Preisach model.
|
Received: 23 September 2020
|
|
|
|
|
[1] Bertotti G.Generalized Preisach model for thedescrip- tion of hysteresis and eddy current effects inmetallic ferromagnetic materials[J]. Journal of Applied Physics, 1991, 69(8): 4608-4610. [2] 赵志刚, 马习纹, 姬俊安, 等. 铁心动态Energetic建模与验证[J]. 电工技术学报, 2020, 35(20): 4241-4250. Zhao Zhigang, Ma Xiwen, Ji Jun'an, et al.Dynamic Energetic modeling and verification of core under harmonic excitation[J] Transactions of China Elec- trotechnical Society, 2020, 35(20): 4241-4250. [3] 李超, 徐启峰. 随温度变化的Preisach磁滞模型建 模方法[J]. 电工技术学报, 2013, 28(12): 90-94. 4 Li Chao, Xu Qifeng.Modeling of temperature dependent hysteresis based on Preisach theory[J]. Transactions of China Electrotechnical Society, 2013, 28(12): 90-94. [4] 刘任, 李琳, 王亚琦, 等. 基于随机性与确定性混合优化算法的Jiles-Atherton磁滞模型参数提取[J]. 电工技术学报, 2019, 34(11): 2260-2268. Liu Ren, Li Lin, Wang Yaqi, et al.Parameter extraction for Jiles-Atherton hysteresis model based on the hybrid technique of stochastic and deter- ministic optimization algorithm[J]. Transactions of China Electrotechnical Society, 2019, 34(11): 2260-2268. [5] 贲彤, 陈龙, 闫荣格, 等. 考虑磁化及磁致伸缩特性各向异性的感应电机铁心电磁应力分析[J]. 电工技术学报, 2019, 34(1): 66-74. Ben Tong, Chen Long, Yan Rongge, et al.Stress analysis of induction motor core considering aniso- tropic magnetic and magnetostrictive properties[J]. Transactions of China Electrotechnical Society, 2019, 34(1): 66-74. [6] Mayergoyz I.Mathematical model of hysteresis and their applications[M]. New York: Academic Press, 2003. [7] Finocchio G, Carpentieri M, Cardelli E.Analytical solution of Everett integral using Lorentzian Preisach function approximation[J]. Journal of Magnetism and Magnetic Materials, 2006, 300(2): 451-470. [8] Ferenc V, Edward D T.Minor loops in magnetization dependent Preisach models[J]. IEEE Transactions on Magnetics, 1992, 28(2): 1245-1248. [9] Hussain S, Lowther D A.An efficient implementation of the classical Preisach model[C]//21st Conference on the Computation of Electromagnetic Fields, Daejeon, 2017:1-6. [10] Zhao Xiaojun, Guan Dawei, Zhang Honggang, et al.Simulation of Preisach hysteresis model based on the first-order reversal curves[J]. International Journal of Applied Electromagnetics & Mechanics, 2017, 55(1-4): 1-9. [11] 赵小军, 刘小娜, 肖帆, 等. 基于Preisach模型的取向硅钢片直流偏磁磁滞及损耗特性模拟[J]. 电工技术学报, 2020, 35(9): 1849-1857. Zhao Xiaojun, Liu Xiaona, Xiao Fan, et al.Hysteretic and loss modeling of silicon steel sheet under the DC biased magnetization based on the Preisach model[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1849-1857. [12] 段娜娜, 徐伟杰, 李永建, 等. 基于极限磁滞回线法的软磁复合材料磁特性模拟[J]. 电工技术学报, 2018, 33(20): 4739-4745. Duan Nana, Xu Weijie, Li Yongjian, et al.Electro- magnetic property modeling of the soft magnetic composite material based on the limiting loop method[J]. Transactions of China Electrotechnical Society, 2018, 33(20): 4739-4745. [13] 段娜娜, 徐伟杰, 李永建, 等. 一种考虑温度和压力影响的磁滞模型及其实验验证[J]. 电工技术学报, 2019, 34(13): 2686-2692. Duan Nana, Xu Weijie, Li Yongjian, et al.A temperature and stress dependent hysteresis model with experiment validation[J]. Transactions of China Electrotechnical Society, 2019, 34(13): 2686-2692. [14] Duan Nana, Xu Weijie, Wang Shuhong, et al.Hysteresis modeling of high-temperature super- conductor using simplified Preisach model[J]. IEEE Transactions on Magnetics, 2015, 51(3): 1-4. [15] 张长庚, 杨庆新, 李永建. 电工软磁材料旋转磁滞损耗测量及建模[J]. 电工技术学报, 2017, 32(11): 208-216. Zhang Changgeng, Yang Qingxin, Li Yongjian.Measurement and modeling of rotational hysteresis loss of electric soft magnetic material[J]. Transactions of China Electrotechnical Society, 2017, 32(11): 208-216. [16] Zsolt Szabó, János Füzi.Implementation and identi- fication of Preisach type hysteresis models with everett function in closed form[J]. Journal of Mag- netism & Magnetic Materials, 2016, 406: 251-258. [17] Zsolt Szabó, Tugyi I, Gy Kádár, et al.Identification procedures for scalar Preisach model[J]. Physica B: Physics of Condensed Matter, 2004, 343(1/4): 142-147. [18] Zsolt Szabó.Preisach functions leading to closed form permeability[J]. Physica B: Condensed Matter, 2006, 372(1-2): 61-67. [19] Stoleriu L, Andrei P, Stancu A. First order reversal curves identification procedures for vector models of hysteresis[J]. Journal of Applied Physics, 2008, 103(7): 07D923-07D926. [20] Sjostrom M.Frequency analysis of classical Preisach model[J]. IEEE Transactions on Magnetics, 1999, 35(4): 2097-2103. [21] Hergli K, Marouani H, Zidi M.Identification of Preisach hysteresis model parameters using genetic algorithms[J]. Journal of King Saud University Science, 2019, 31(4): 746-752. |
|
|
|