|
|
Mechanical Fault Fusion Diagnosis of High Voltage Circuit Breaker Using Multi-Vibration Information Based on Random Forest |
Ma Suliang, Wu Jianwen, Yuan Yang, Jia Bowen, Luo Xiaowu, Li Weixin |
School of Automation Science and Electrical Engineering Beihang University Beijing 100191 China |
|
|
Abstract Healthy condition of high voltage circuit breaker (HVCB) has an important impact on the power system. With the development of artificial intelligence, many advanced methods have been applied to fault type identification of HVCBS. At present, most related researches are devoted to improving the feature extraction process or the classification method based on a single sensor to obtain a higher accuracy. However, the improved method can only approach the upper limit determined by data information, ignoring the limited ability of a single information to identify faults. Therefore, this study has proposed a multi-sensor joint decision approach based on random forest. Firstly, under the typical faults condition, the differences of vibration characteristic at the different locations are analyzed. Then, based on a random forest algorithm, a multi-sensor fusion diagnosis process is designed. Finally, based on the HVCB experimental platform, the results of six typical classifiers and random forest fusion method under different sensor combinations are compared to verify that the proposed method can significantly improve fault diagnosis performance and provide new ideas for promoting the application of HVCB fault location.
|
Received: 05 December 2019
|
|
|
|
|
[1] 徐建源, 朗福成, 林莘. 高压断路器机械特性在线监测技术的现状与发展趋势[J]. 华通技术, 2005, 24(2): 17-22. Xu Jianyuan, Lang Fucheng, Lin Xin.The present condition and developing tendency of online monitoring technology of mechanical characteristics of high voltage circuit breaker[J]. Huatong Technology, 2005, 24(2): 17-22. [2] 张健康, 粟小华, 胡勇, 等. 智能变电站保护用电流互感器配置问题及解决措施[J]. 电力系统保护与控制, 2014, 42(7): 140-145. Zhang Jiankang, Su Xiaohua, Hu Yong, et al.Problems and solutions of configuration scheme of current transformer used by protection in smart substation[J]. Power System Protection and Control, 2014, 42(7): 140-145. [3] 杨秋玉, 阮江军, 黄道春, 等. 基于振动信号时频图像识别的高压断路器分闸缓冲器状态评估[J]. 电工技术学报, 2019, 34(19): 4048-4057. Yang Qiuyu, Ruan Jiangjun, Huang Daochun, et al.Opening damper condition evaluation based on vibration time-frequency images for high-voltage circuit breakers[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4048-4057. [4] 孟晓承, 韩学山, 许易经, 等. SF6高压断路器机械故障概率的非精确条件估计[J]. 电工技术学报, 2019, 34(4): 693-702. Meng Xiaocheng, Han Xueshan, Xu Yijing, et al.Imprecise estimation for conditional mechanical outage probabilities of SF6 high voltage circuit breakers[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 693-702. [5] Niu Weihua, Liang Guishu, Yuan Hejin, et al.A fault diagnosis method of high voltage circuit breaker based on moving contact motion trajectory and ELM[J]. Mathematical Problems in Engineering, 2016, 2016: 1-10. [6] 杨凌霄, 朱亚丽. 基于概率神经网络的高压断路器故障诊断[J]. 电力系统保护与控制, 2015, 43(10): 62-67. Yang Lingxiao, Zhu Yali.High voltage circuit breaker fault diagnosis of probabilistic neural network[J]. Power System Protection and Control, 2015, 43(10): 62-67. [7] 关永刚, 杨元威, 钟建英, 等. 高压断路器机械故障诊断方法综述[J]. 高压电器, 2018, 54(7): 10-19. Guan Yonggang, Yang Yuanwei, Zhong Jianying, et al.Review on mechanical fault diagnosis methods for high-voltage circuit breakers[J]. High Voltage Apparatus, 2018, 54(7): 10-19. [8] Huang Nantian, Fang Lihua, Cai Guowei, et al.Mechanical fault diagnosis of high voltage circuit breakers with unknown fault type using hybrid classifier based on LMD and time segmentation energy entropy[J]. Entropy, 2016, 18(9): 322. [9] Landry M, FranÇois L, Landry C, et al.An improved vibration analysis algorithm as a diagnostic tool for detecting mechanical anomalies on power circuit breakers[J]. IEEE Transactions on Power Delivery, 2008, 23(4): 1986-1994. [10] Runde M, Ottesen G E, Skyberg B, et al.Vibration analysis for diagnostic testing of circuit-breakers[J]. IEEE Transactions on Power Delivery, 1996, 11(4): 1816-1823. [11] Lee D S S, Lithgow B J, Morrison R E. New fault diagnosis of circuit breakers[J]. IEEE Transactions on Power Delivery, 2003, 18(2): 454-459. [12] Hess D P, Park S Y, Tangri M K, et al.Noninvasive condition assessment and event timing for power circuit breakers[J]. IEEE Transactions on Power Delivery, 1992, 7(1): 353-360. [13] Lai M L, Park S Y, Lin C C, et al.Mechanical failure detection of circuit breakers[J]. IEEE Transactions on Power Delivery, 1988, 3(4): 1724-1731. [14] 王振浩, 顾欣然, 孙福军. 基于EMD近似熵的高压断路器故障诊断[J]. 高压电器, 2018, 54(10): 151-156, 163. Wang Zhenhao, Gu Xinran, Sun Fujun.High voltage circuit breaker fault diagnosis based on EMD approximate entropy[J]. High Voltage Apparatus, 2018, 54(10): 151-156, 163. [15] Ma Suliang, Chen Mingxuan, Wu Jianwen, et al.Intelligent fault diagnosis of HVCB with feature space optimization-based random forest[J]. Sensors, 2018, 18(4): 1221. [16] 汪先兵, 费树岷, 徐清扬, 等. BP神经网络PID控制的永磁真空开关储能电容恒流充电特性分析[J]. 电工技术学报, 2015, 30(10): 212-218. Wang Xianbing, Fei Shumin, Xu Qingyang, et al.Constant current charging characteristic analysis of storage capacitor based on BP neural network PID control for permanent magnet vacuum switch[J]. Transactions of China Electrotechnical Society, 2015, 30(10): 212-218. [17] 刘艳, 陈丽安. 基于SOM的真空断路器机械故障诊断[J]. 电工技术学报, 2017, 32(5): 49-54. Liu Yan, Chen Li’an.Mechanical fault diagnosis of vacuum circuit breaker based on SOM[J]. Transactions of China Electrotechnical Society, 2017, 32(5): 49-54. [18] 程学珍, 朱晓林, 杜彦镔, 等. 基于神经模糊Petri网的高压断路器故障诊断研究[J]. 电工技术学报, 2018, 33(11): 2535-2544. Cheng Xuezhen, Zhu Xiaolin, Du Yanbin, et al.High voltage circuit breaker fault diagnosis based on neural fuzzy Petri nets[J]. Transactions of China Electrotechnical Society, 2018, 33(11): 2535-2544. [19] 孙一航, 武建文, 廉世军, 等. 结合经验模态分解能量总量法的断路器振动信号特征向量提取[J]. 电工技术学报, 2014, 29(3): 228-236. Sun Yihang, Wu Jianwen, Lian Shijun, et al.Extraction of vibration signal feature vector of circuit breaker based on empirical mode decomposition amount of energy[J]. Transactions of China Electrote-chnical Society, 2014, 29(3): 228-236. [20] 程序, 关永刚, 张文鹏, 等. 基于因子分析和支持向量机算法的高压断路器机械故障诊断方法[J]. 电工技术学报, 2014, 29(7): 209-215. Cheng Xu, Guan Yonggang, Zhang Wenpeng, et al.Diagnosis method on the mechanical failure of high voltage circuit breakers based on factor analysis and SVM[J]. Transactions of China Electrotechnical Society, 2014, 29(7): 209-215. [21] 陈士刚, 关永刚, 张小青, 等. 不完备故障类别下基于Multi-SVDD的高压隔离开关故障诊断方法[J]. 电工技术学报, 2018, 33(11): 2439-2447. Chen Shigang, Guan Yonggang, Zhang Xiaoqing, et al.Diagnosis method of high voltage isolating switch fault based on multi-SVDD under incomplete fault type[J]. Transactions of China Electrotechnical Society, 2018, 33(11): 2439-2447. [22] 宋玉琴, 王冰, 李超, 等. 基于优化随机森林算法的高压断路器故障诊断[J]. 电子测量技术, 2018, 41(21): 95-98. Song Yuqin, Wang Bing, Li Chao, et al.Fault diagnosis of high-voltage circuit breaker based on optimized random forest algorithm[J]. Electronic Measurement Technology, 2018, 41(21): 95-98. [23] Vernekar K, Kumar H, Gangadharan K V.Engine gearbox fault diagnosis using empirical mode decomposition method and Naive Bayes algorithm[J]. Sadhana, 2017, 42(7): 1143-1153. [24] Glowacz A.Recognition of acoustic signals of induction motors with the use of MSAF10 and Bayes classfier[J]. Archives of Metallurgy and Materials, 2016, 61(1): 153-158. [25] Seera M, Lim C P, Loo C K.Motor fault detection and diagnosis using a hybrid FMM-CART model with online learning[J]. Journal of Intelligent Manufacturing, 2016, 27(6): 1273-1285. [26] Seera M, Lim C P, Tan S C, et al.A hybrid FAM-CART model and its application to medical data classification[J]. Neural Computing and Applications, 2015, 26(8): 1799-1811. [27] 石鑫. 基于深度学习的变压器故障诊断技术研究[D]. 北京: 华北电力大学, 2016. [28] 张玉振, 吉兴全, 彭立岩, 等. 基于栈式自编码器和Softmax分类器的电力变压器故障诊断[J]. 中国科技论文, 2018, 13(23): 2694-2699. Zhang Yuzhen, Ji Xingquan, Peng Liyan, et al.Fault diagnosis for power transformer using stacked auto-encoders and Softmax regression[J]. China Sciencepaper, 2018, 13(23): 2694-2699. [29] Duan Zhihe, Wu Tonghai, Guo Shuaiwei, et al.Development and trend of condition monitoring and fault diagnosis of multi-sensors information fusion for rolling bearings: a review[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(1-4): 803-819. [30] Zhang Xuewei, Li Hanshan.Research on transformer fault diagnosis method and calculation model by using fuzzy data fusion in multi sensor detection system[J]. Optik, 2019, 176: 716-723. [31] Dempster A P.Upper and lower probabilities induced by a multi-valued mapping[J]. The Annals of Mathematical Statistics, 1967, 38(2): 325-339. [32] Shafer G.A mathematical theory of evidence[M]. Princeton: Princeton University Press, 1976: 35-43. [33] 赵书涛, 王亚潇, 孙会伟, 等. 基于自适应权重证据理论的断路器故障诊断方法研究[J]. 中国电机工程学报, 2017, 37(23): 7040-7046. Zhao Shutao, Wang Yaxiao, Sun Huiwei, et al.Research of circuit breaker fault recognition method based on adaptive weighted of evidence theory[J]. Proceedings of the CSEE, 2017, 37(23): 7040-7046. [34] 苏广宁, 张沛超, 胡炎, 等. 基于多源信息的电网故障诊断新方法[J]. 电力系统自动化, 2012, 36(1): 61-65. Su Guangning, Zhang Peichao, Hu Yan, et al.A novel fault diagnosis method based on information fusion of multi-resources for power grids[J]. Automation of Electric Power Systems, 2012, 36(1): 61-65. [35] 卢春红, 熊伟丽, 顾晓峰. 基于贝叶斯推理的PKPCAM的非线性多模态过程故障检测与诊断方法[J]. 化工学报, 2014, 65(12): 4866-4874. Lu Chunhong, Xiong Weili, Gu Xiaofeng.Fault detection and diagnosis for nonlinear and multimode processes using Bayesian inference based PKPCAM approach[J]. CIESC Journal, 2014, 65(12): 4866-4874. [36] 毛彪, 杨松, 李英顺. 改进动态因果图与模糊推理融合故障诊断方法[J]. 计算机工程与应用, 2020, 56(3): 259-265. Mao Biao, Yang Song, Li Yingshun.Improved dynamic causality diagram and fuzzy inference fusion fault diagnosis method[J]. Computer Engineering and Applications, 2020, 56(3): 259-265. [37] Kang M, Islam M R, Kim J, et al.A hybrid feature selection scheme for reducing diagnostic performance deterioration caused by outliers in data-driven diagnostics[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5): 3299-3310. |
|
|
|