|
|
Proton Exchange Membrane Fuel Cell/Electrolyzer Hybrid Power System Modeling and Load Tracking Strategy |
Chen Jinzhou1, Lin Fei1, He Hongwen2, Wang Yaxiong1,2 |
1. School of Mechanical Engineering and Automation Fuzhou University Fuzhou 350108 China; 2. National Engineering Laboratory for Electric Vehicles Beijing Institute of Technology Beijing 100081 China |
|
|
Abstract Integrated proton exchange membrane fuel cell (PEMFC) with electrolyzer possessing high efficiency and non-pollution can be used for power generation and energy storage, and are not limited by Carnot cycle leading to a potential application in the field of electric energy supply/storage. This paper studies a hybrid power system consisting of a hybrid PEMFC/electrolyzer system and auxiliary power source and its energy management strategy (EMS), where the auxiliary power source is comprised by photovoltaic cells and batteries. In the hybrid power system, the PEMFC is mainly used to track the load demand, and the auxiliary power supply and electrolyzer compensate the power when the load demand is very high, and recover the extra energy in the case of low load conditions, to ensure the efficient and stable operation of the hybrid power system. The mathematical model of the hybrid PEMFC/electrolyzer power system was constructed in Matlab/Simulink. By analyzing the load demands, a load tracking EMS of the hybrid power system was proposed. Finally, the effectiveness of the model and strategy was verified through simulation analysis of a numerical example.
|
Received: 20 November 2019
|
|
|
|
|
[1] Belussi L, Barozzi B, Bellazzi A, et al.A review of performance of zero energy buildings and energy efficiency solutions[J]. Journal of Building Engineering, 2019, 25: 100772. [2] Özgirgin E, Devrim Y, Albostan A.Modeling and simulation of a hybrid photovoltaic (PV) module-electrolyzer-PEM fuel cell system for micro-cogeneration applications[J]. International Journal of Hydrogen Energy, 2015, 40(44): 15336-15342. [3] 孙鹤旭, 李争, 陈爱兵, 等. 风电制氢技术现状及发展趋势[J]. 电工技术学报, 2019, 34(19): 4071-4083. Sun Hexu, Li Zheng, Chen Aibing, et al.Current status and development trend of hydrogen production technology by wind power[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4071-4083. [4] Abdin Z, Webb C J, Gray E M A. PEM fuel cell model and simulation in Matlab-Simulink based on physical parameters[J]. Energy, 2016, 116: 1131-1144. [5] Pukrushpan J T, Stefanopoulou A G, Peng H.Control of fuel cell breathing[J]. IEEE Control Systems Magazine, 2004, 24(2): 30-46. [6] 蔡国伟, 彭龙, 孔令国, 等. 光氢混合发电系统功率协调控制[J]. 电力系统自动化, 2017, 41(1): 109-116. Cai Guowei, Peng Long, Kong Lingguo, et al.Power coordinated control of photovoltaic and hydrogen hybrid power generation system[J]. Automation of Electric Power Systems, 2017, 41(1): 109-116. [7] 桑丙玉, 陶以彬, 郑高, 等. 超级电容-蓄电池混合储能拓扑结构和控制策略研究[J]. 电力系统保护与控制, 2014, 42(2): 1-6. Sang Bingyu, Tao Yibin, Zheng Gao, et al.Research on topology and control strategy of the super-capacitor and battery hybrid energy storage[J]. Power System Protection and Control, 2014, 42(2): 1-6. [8] 刘志博, 刘兴杰. 独立直流微网中混合储能系统的改进多滞环控制策略[J]. 电工技术学报, 2018, 33(3): 490-497. Liu Zhibo, Liu Xingjie.Improved multi-hysteresis control strategy of hybrid storage system in a stand-alone DC microgrid[J]. Transactions of China Electrotechnical Society, 2018, 33(3): 490-497. [9] 田春光, 田利, 李德鑫, 等. 基于混合储能系统跟踪光伏发电输出功率的控制策略[J]. 电工技术学报, 2016, 31(14): 75-83. Tian Chunguang, Tian Li, Li Dexin, et al.Control strategy for tracking the output power of photovoltaic power generation based on hybrid energy storage system[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 75-83. [10] 陈柏翰, 冯伟, 孙凯, 等. 冷热电联供系统多元储能及孤岛运行优化调度方法[J]. 电工技术学报, 2019, 34(15): 3231-3243. Chen Pohan, Feng Wei, Sun Kai, et al.Multi-energy storage system and islanded optimal dispatch method of CCHP[J]. Transactions of China Electrotechnical Society, 2019, 34(15): 3231-3243. [11] 李建林, 郭斌琪, 牛萌, 等. 风光储系统储能容量优化配置策略[J]. 电工技术学报, 2018, 33(6): 1189-1196. Li Jianlin, Guo Binqi, Niu Meng, et al.Optimal configuration strategy of energy storage capacity in wind/PV/storage hybrid system[J]. Transactions of China Electrotechnical Society, 2018, 33(6): 1189-1196. [12] 孔令国, 蔡国伟, 李龙飞, 等. 风光氢综合能源系统在线能量调控策略与实验平台搭建[J]. 电工技术学报, 2018, 33(14): 3371-3384. Kong Lingguo, Cai Guowei, Li Longfei, et al.Online energy control strategy and experimental platform of integrated energy system of wind, photovoltaic and hydrogen[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3371-3384. [13] Ferrero D, Santarelli M.Investigation of a novel concept for hydrogen production by PEM water electrolysis integrated with multi-junction solar cells[J]. Energy Conversion and Management, 2017, 148: 16-29. [14] Olivier P, Bourasseau C, Bouamama B.Dynamic and multiphysic PEM electrolysis system modelling: a bond graph approach[J]. International Journal of Hydrogen Energy, 2017, 42(22): 14872-14904. [15] Yigit T, Selamet O F.Mathematical modeling and dynamic Simulink simulation of high-pressure PEM electrolyzer system[J]. International Journal of Hydrogen Energy, 2016, 41(32): 13901-13914. [16] Abdin Z, Webb C J, Gray E M A. Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell[J]. International Journal of Hydrogen Energy, 2015, 40(39): 13243-13257. [17] Görgün H.Dynamic modelling of a proton exchange membrane (PEM) electrolyzer[J]. International Journal of Hydrogen Energy, 2006, 31(1): 29-38. [18] Ruuskanen V, Koponen J, Huoman K, et al.PEM water electrolyzer model for a power-hardware-in-loop simulator[J]. International Journal of Hydrogen Energy, 2017, 42(16): 10775-10784. [19] 罗旭. 无均衡管理的分布式家用光伏/锂电发电系统[D]. 成都: 西南交通大学, 2015. [20] Tremblay O, Dessaint L A, Dekkiche A I.A generic battery model for the dynamic simulation of hybrid electric vehicles[C]//2007 IEEE Vehicle Power and Propulsion Conference, Arlington, 2007: 284-289. [21] Wang Y X, Ou K, Kim Y B.Modeling and experimental validation of hybrid proton exchange membrane fuel cell/battery system for power management control[J]. International Journal of Hydrogen Energy, 2015, 40(35): 11713-11721. [22] 王哲, 谢怡, 臧鹏飞, 等. 基于极小值原理的燃料电池客车能量管理策略[J]. 吉林大学学报(工学版), 2020(1): 36-43. Wang Zhe, Xie Yi, Zang Pengfei, et al.Energy management strategy of fuel cell bus based on Pontryagin’s minimum principle[J]. Journal of Jilin University (Engineering and Technology Edition), 2020(1): 36-43. |
|
|
|