|
|
Breakdown Characteristics Study of Non-Uniform Field in Gas Insulated Switchgear under Oscillating Lightning Impulses |
Zhang Liang1, He Cong1, Li Junhao1, Li Yuan2 |
1. State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an 710049 China; 2. State Grid Qinghai Electric Power Research Institute Xining 810008 China |
|
|
Abstract Gas insulated switchgear (GIS) is the key equipment of power system. Impulse voltage withstand test is an important guarantee for its safe and reliable operation, in which both oscillating lightning impulse (OLI) and aperiodic lightning impulse (ALI) can be used in field. However, the similarities and differences between the two types of waveforms are still unclear. Thus, breakdown characteristics of insulation defects under OLI and ALI should be studied first. This paper sets up a protrusion defect on HV conductor to form non-uniform field distribution, and compares the breakdown characteristics under ALI and OLI. An impulse voltage generator was firstly established to generate 4 OLIs and 2 ALIs. A protrusion defect on HV conductor was set up in 363kV GIS chamber. Its length was 12mm and top radius of curvature was 0.4mm. Then 50% probability breakdown voltage (U50%) and voltage-time (V-t) characteristics were experimentally studied. The results show that the U50% difference between OLI and ALI is small. They are equivalent considering the detection for protrusion defect. With the increase of wavefront, U50% decreases first and then increases. It is the lowest at 3μs, 1.5% lower than that at 1.2μs, and about 10% higher at 13μs. Breakdowns under OLI occur around each waveform peak, and V-t plots are dispersed. V-t plots under ALI always occur around the waveform peak continuously. Their V-t characteristics tend to coincide when wavefront exceeds 3μs. The results deepen the understanding of discharge phenomenon of non-uniform field in SF6 under OLI, and also provide support for the scientific selection of waveform parameters in field impulse voltage withstand test of GIS.
|
Received: 20 May 2019
|
|
|
|
|
[1] 乔胜亚, 周文俊, 王勇, 等. 典型吸附剂对GIS固体绝缘介质放电特征气体变化规律影响[J]. 电工技术学报, 2018, 33(19): 213-221. Qiao Shengya, Zhou Wenjun, Wang Yong, et al.Effect of typical adsorbents on gas change characteristics of gas insulated switchgear solid insulation dielectric[J]. Transactions of China Electrotechnical Society, 2018, 33(19): 213-221. [2] 宁宇, 孙洪宇, 张伟, 等. GIS 高压母线段间连接缝隙造成的过热分析[J]. 电工技术学报, 2017, 32(增刊1): 217-224. Ning Yu, Sun Hongyu, Zhang Wei, et al.Overheat analysis on the connection gap in GIS with the sections connected by bolts[J]. Transactions of China Electrotechnical Society, 2017, 32(S1): 217-224. [3] 张亮, 车斌, 韩旭涛, 等. 负极性振荡雷电冲击电压下SF6尖板模型局部放电特性[J]. 西安交通大学学报, 2016, 50(4): 108-116. Zhang Liang, Che Bin, Han Xutao, et al.Partial discharge on SF6 needle-plane defect under negative oscillating lightning impulse voltage[J]. Journal of Xi’an Jiaotong University, 2016, 50(4): 108-116. [4] 齐伟强, 陈柏超, 袁佳歆, 等. 一种加载短路针的小型化气体绝缘组合电器内置特高频传感器[J]. 电工技术学报, 2017, 32(6): 248-255. Qi Weiqiang, Chen Bochao, Yuan Jiaxin, et al.Needle load short circuit miniaturization of gas insulated switchgear ultra-high frequency inside sensor[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 248-255. [5] 张博雅, 张贵新. 直流GIL中固-气界面电荷特性研究综述Ⅰ: 测量技术及积聚机理[J]. 电工技术学报, 2018, 33(20): 4649-4662. Zhang Boya, Zhang Guixin.Review of charge accumulation characteristics at gas-solid interface in DC GIL, part I: measurement and mechanisms[J]. Transactions of China Electrotechnical Society, 2018, 33(20): 4649-4662. [6] Metwally I A.Technology progress in high-voltage gas-insulated substations[J]. Potentials IEEE, 2010, 29(6): 25-32. [7] 李华良, 王博, 孙敏, 等. 1100kV/10kA特高压交流长期带电试验回路的设计[J]. 电力工程技术, 2019, 38(1): 107-113. Li Hualiang, Wang Bo, Sun Min, et al.Design of 1100kV/10kA UHV AC long term live test loop[J]. Electric Power Engineering Technology, 2019, 38(1): 107-113. [8] 刘有为, 吴立远, 弓艳朋. GIS 设备气体分解物及其影响因素研究[J]. 电网技术, 2009, 33(5): 58-61. Liu Youwei, Wu Liyuan, Gong Yanpeng.Investigation on SF6 decomposition products in GIS and affecting factors[J]. Power System Technology, 2009, 33(5): 58-61. [9] Feser K, Sun R, Eriksson A, et al.On-site dielectric testing of GIS: theoretical and practical considerations[J]. IEEE Transactions on Power Delivery, 1991, 6(2): 615-625. [10] 胡德贵, 张亮, 吴邦, 等. 正极性振荡型冲击电压下带尖刺SF6间隙击穿过程的数学模型构建[J]. 中国电机工程学报, 2018, 38(15): 4612-4619. Hu Degui, Zhang Liang, Wu Bang, et al.Construction of mathematical model about the breakdown process of SF6 gap with protrusion under positive oscillating impulse voltage[J]. Proceedings of the CSEE, 2018, 38(15): 4612-4619. [11] Schichler U, Koltunowicz W, Endo F, et al.Risk assessment on defects in GIS based on PD diagnostics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(6): 2165-2172. [12] IEC 60060-3 High-voltage test techniques. part 3: Definitions and requirements for on-site testing 60060-3 High-voltage test techniques. part 3: Definitions and requirements for on-site testing[S]. 2006. [13] GB/T 16927.3 高电压试验技术第3部分: 现场试验的定义及要求B/T 16927.3 高电压试验技术第3部分: 现场试验的定义及要求[S]. 2010. [14] Zhang Liang, Han Xutao, Li Junhao.Partial discharge detection and analysis of needle-plane defect in SF6 under negative oscillating lightning impulse voltage based on UHF method[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(1): 296-303. [15] 张晓星, 田双双, 肖淞, 等. SF6替代气体研究现状综述[J]. 电工技术学报, 2018, 33(12): 2883-2893. Zhang Xiaoxing, Tian Shuangshuang, Xiao Song, et al.A review study of SF6 substitute gases[J]. Transactions of China Electrotechnical Society, 2018, 33(12): 2883-2893. [16] Okabe S, Yuasa S, Kaneko S.Evaluation of breakdown characteristics of gas insulated switchgears for non-standard lightning impulse waveformsbreakdown characteristics for non-standard lightning impulse waveforms associated with disconnector switching surges[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(3): 721-729. [17] Okabe S, Yuasa S, Kaneko S, et al.Evaluation of breakdown characteristics of gas insulated switchgears for non-standard lightning impulse waveformsmethod for converting non-standard lightning impulse waveforms into standard lightning impulse waveforms[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(1): 42-51. [18] 张璐, 张乔根, 刘石, 等. 特快速瞬态过电压和雷电冲击作用下特高压GIS绝缘特性[J]. 高电压技术, 2012, 38(2): 335-341. Zhang Lu, Zhang Qiaogen, Liu Shi, et al.Insulation characteristics of UHV GIS under VFTO and lightning impulse[J]. High Voltage Engineering,2012, 38(2): 335-341. [19] 张璐, 黄国强, 张乔根, 等. 冲击电压下SF6间隙临界半径现象形成机理[J]. 高电压技术, 2018, 44(3): 796-803. Zhang Lu, Huang Guoqiang, Zhang Qiaogen, et al.Mechanism of critical radius phenomenon for SF6 gap under impulse voltages[J]. High Voltage Engineering, 2018, 44(3): 796-803. [20] 文韬, 张乔根, 郭璨, 等. 冲击电压下SF6棒-板间隙放电极性效应的反转现象[J]. 高电压技术, 2015, 41(1): 275-281. Wen Tao, Zhang Qiaogen, Guo Can, et al.Reversal phenomenon of discharge polarity effect in SF6 rod-plate gap under impulse voltages[J]. High Voltage Engineering, 2015, 41(1): 275-281. [21] Seeger M, Niemeyer L, Bujotzek M. Partial discharges and breakdown at protrusions in uniform background fields in SF6[J]. Journal of Physics D: Applied Physics, 2008, 41: 185204(14). [22] Seeger M, Niemeyer L, Bujotzek M. Leader propagation in uniform background fields in SF6[J]. Journal of Physics D: Applied Physics, 2009, 42: 185205(11). [23] Bujotzek M, Seeger M, Schmidt F, et al. Experimental investigation of streamer radius and length in SF6[J]. Journal of Physics D: Applied Physics, 2015, 48: 245201(12). [24] Zhao Xuefeng, Yao Xiu, Guo Zhifeng, et al.Characteristics and development mechanisms of partial discharge in SF6 gas under impulse voltages[J]. IEEE Transactions on Plasma Science, 2011, 39(2): 668-674. [25] 季洪鑫, 李成榕, 马国明, 等. 冲击电压下气体绝缘开关设备悬浮缺陷放电特征[J]. 电工技术学报, 2017, 32(6): 256-264. Ji Hongxin, Li Chengrong, Ma Guoming, et al.Characteristic analysis of gas insulated switchgear suspension defect under impulse voltage[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 256-264. [26] IEC 60060-1 High-voltage test techniques part 1: general definitions and test requirements[S]. 2010. [27] Niemeyer L, Ullrich L, Wiegart N.The mechanism of leader breakdown in electronegative gases[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1989, 4(2): 309-324. [28] Niemeyer L.A generalized approach to partial discharge modeling[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1995, 2(4): 510-528. [29] Hinterholzer T, Boeck W.Space-charge-stabilization in SF6[C]//IEEE International Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Kitchener, Canada, 2001: 392-396. |
|
|
|