|
|
Characteristics Analysis for a Boundary Conduction Mode Hybrid-Type Photovoltaic Micro-Inverter |
Zhang Feng1, Xie Yunxiang1, Hu Yanshen2, Chen Gang1, Wang Xuemei1 |
1. School of Electric Power South China University of Technology Guangzhou 510640 China; 2. Shenzhen MOSO Electric Co. Ltd Shenzhen 518131 China |
|
|
Abstract The characteristics of the boundary conduction mode (BCM) hybrid-type photovoltaic (PV) micro-inverter are analyzed in detail in this paper. This new topology is a non-isolated pseudo-dc-link structure, which inherits the advantages of low transformer turns ratio, low leakage inductance and low voltage stress of boost-flyback converter, as well as the step-down function of flyback converter. Exploiting the natural resonance of the hybrid-type converter in BCM, the zero-voltage switching (ZVS) or valley switching (VS) of the main switch, and the zero-current switching (ZCS) of the rectifier diodes are achieved. Furthermore, owing to the inherent passive snubber in boost-flyback converter, the leakage energy of transformer is recycled, and the turn-off voltage spike of the main switch is clamped. Because of these characteristics mentioned above, the hybrid-type inverter has smaller transformer volume and higher converter efficiency compared with the conventional flyback inverter. The operation of this topology is described, and the mathematical expression of reference current is derived to guarantee high quality of injected grid current. Finally, a 240W prototype was built to verify the correctness of theoretical analysis and the performance of the topology.
|
Received: 26 January 2019
Published: 27 March 2020
|
|
|
|
|
[1] Blaabjerg F, Yang Yongheng, Yang Dongsheng, et al.Distributed power-generation systems and protection[J]. Proceedings of the IEEE, 2017, 105(7): 1311-1331. [2] Li Quan, Wolfs P.A review of the single phase photovoltaic module integrated converter topologies with three different DC link configurations[J]. IEEE Transactions on Power Electronics, 2008, 23(3): 1320-1333. [3] 陈继洪, 洪峰. 一种新型的正激并网微逆变器[J]. 电工技术学报, 2015, 30(14): 286-294. Chen Jihong, Hong Feng.A novel forward grid- connected micro-inverter[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 286-294. [4] 王立乔, 祝百年, 孙孝峰. 一种单级隔离型Sepic逆变器[J]. 电工技术学报, 2016, 31(18): 75-82. Wang Liqiao, Zhu Bainian, Sun Xiaofeng.A single-stage isolated Sepic inverter[J]. Transactions of China Electrotechnical Society, 2016, 31(18): 75-82. [5] 王星星, 嵇保健, 洪峰, 等. 一种改进的正反激并网微型逆变器[J]. 电工技术学报, 2017, 32(18): 202-210. Wang Xingxing, Ji Baojian, Hong Feng, et al.An improved forward-flyback grid-connected micro- inverter[J]. Transactions of China Electrotechnical Society, 2017, 32(18): 202-210. [6] Kyritsi A, Tatakis E, Papanikolaou N.Optimum design of the current-source flyback inverter for decentralized grid-connected photovoltaic systems[J]. IEEE Transactions on Energy Conversion, 2008, 23(1): 281-293. [7] Nanakos A, Christidi G, Tatakis E.Weighted efficiency optimization of flyback micro-inverter under improved boundary conduction mode (i-BCM)[J]. IEEE Transactions on Power Electronics, 2015, 30(10): 5548-5564. [8] 冯夏云, 汪飞, 吴春华, 等. 反激式微逆集群并网谐波交互性能对比研究[J]. 电工技术学报, 2018, 33(11): 2554-2563. Feng Xiayun, Wang Fei, Wu Chunhua, et al.Comparisons of harmonic interactions due to integrated flyback micro-inverters[J]. Transactions of China Electrotechnical Society, 2018, 33(11): 2554-2563. [9] Lee S, Cha W, Kwon B, et al.Discrete-time repetitive control of flyback CCM inverter for PV power applications[J]. IEEE Transactions on Industrial Electronics, 2016, 63(2): 976-984. [10] Kim H, Lee J, Lai J, et al.Iterative learning controller with multiple phase-lead compensation for dual-mode flyback inverter[J]. IEEE Transactions on Power Electronics, 2017, 32(8): 6468-6480. [11] Kim H, Lee J, Kim M.Downsampled iterative learning controller for flyback CCM inverter[J]. IEEE Transactions on Industrial Electronics, 2018, 65(1): 510-520. [12] Hu Haibing, Harb S, Kutkut N, et al.A single-stage microinverter without using eletrolytic capacitors[J]. IEEE Transactions on Power Electronics, 2013, 28(6): 2677-2687. [13] 胡海兵, 黄宵驳, 王万宝, 等. 具有功率解耦功能的三端口反激式单级光伏微型逆变器[J]. 中国电机工程学报, 2013, 33(12): 47-54. Hu Haibing, Huang Xiaobo, Wang Wanbao, et al.A PV micro-inverter based on three-port flyback with power decoupling function[J]. Proceedings of the CSEE, 2013, 33(12): 47-54. [14] Zare M, Mohamadian M, Beiranvand R.A single- phase grid-connected photovoltaic inverter based on a three-switch three-port flyback with series power decoupling circuit[J]. IEEE Transactions on Industrial Electronics, 2017, 64(3): 2062-2071. [15] 张凤阁, 朱仕禄, 殷孝雎, 等. 交错反激式光伏并网微逆变器的控制器实现[J]. 电工技术学报, 2013, 28(5): 142-153. Zhang Fengge, Zhu Shilu, Yin Xiaoju, et al.Controller design of grid-connected microinverter based on interleaved flyback structure[J]. Transa- ctions of China Electrotechnical Society, 2013, 28(5): 142-153. [16] Zhang Zhiling, He Xiaofei, Liu Yanfei.An optimal control method for photovoltaic grid-tied-interleaved flyback micro-inverters to achieve high efficiency in wide load range[J]. IEEE Transactions on Power Electronics, 2013, 28(11): 5074-5087. [17] Gao Mingzhi, Chen Min, Zhang Chi, et al.Analysis and implementation of an improved flyback inverter for photovoltaic AC module applications[J]. IEEE Transactions on Power Electronics, 2014, 29(7): 3428-3444. [18] 马超, 张方华. 有源钳位反激式光伏微型并网逆变器输出波形质量的分析和改善[J]. 中国电机工程学报, 2014, 34(3): 354-362. Ma Chao, Zhang Fanghua.Analysis and improvement on output current quality of active clamped flyback type micro PV inverters[J]. Proceedings of the CSEE, 2014, 34(3): 354-362. [19] Kim Y, Ji Y, Kim J, et al.A new control strategy for improving weighted efficiency in photovoltaic AC module type interleaved flyback inverters[J]. IEEE Transactions on Power Electronics, 2013, 28(6): 2688-2699. [20] Rezaei M, Lee K, Huang A.A high-efficiency flyback micro-inverter with a new adaptive snubber for photovoltaic applications[J]. IEEE Transactions on Power Electronics, 2016, 31(1): 318-327. [21] Cha W, Cho Y, Kwon J, et al.Highly efficient microinverter with soft-switching step-up converter and single-switch-modulation inverter[J]. IEEE Transa- ctions on Industrial Electronics, 2015, 62(6): 3516-3523. [22] Tseng K, Liang T.Novel high-efficiency step-up converter[J]. IEE Proceedings-Electric Power Appli- cation, 2004, 151(2): 182-190. [23] 吴红飞, 古俊银, 张君君, 等. 高效率高增益Boost- Flyback 直流变换器[J]. 中国电机工程学报, 2011, 31(24): 40-45. Wu Hongfei, Gu Junyin, Zhang Junjun, et al.High efficiency high step-up Boost-Flyback DC/DC converter[J]. Proceedings of the CSEE, 2011, 31(24): 40-45. [24] Shitole A, Sathyan S, Suryawanshi H, et al.Soft switched high voltage gain Boost integrated flyback converter interfaced single-phase grid tied inverter for SPV integration[J]. IEEE Transactions on Industry Applications, 2018, 54(1): 482-493. |
|
|
|