|
|
Integrated Control of Primary Frequency Regulation Considering Dead Band of Energy Storage |
Ma Zhihui1, Li Xinran1, Tan Zhuangxi1, Huang Jiyuan2, He Li1 |
1. College of Electrical and Information Engineering Hunan University Changsha 410082 China 2. State Grid Hunan Electric Power Corporation Limited Changsha Power Supply Company Changsha 410015 China |
|
|
Abstract An integrated control of primary frequency regulation (PFR) considering the dead band of energy storage was proposed in this paper. Furthermore, a dead band limitation of energy storage in PFR was defined by analyzing the mechanism of dead band in conventional generators. In order to completely develop the potential of energy storage reflecting in the power grid PFR fast and precisely, the dead band limitation of energy storage was set within the range of the conventional generators, which could also improve the quality of power grid frequency effectively and avoid the frequent operation of the conventional generators. Then, through analyzing the influence of VDC and VIC on the frequency of the system, a control method that combines the virtual droop control (VDC) strategy and the virtual inertia control (VIC) strategy was proposed. To realize the coordination and mutual complement of the two control strategies, the control method was selected according to the frequency regulation demand of the system. Besides, in order to restrain the output of the energy storage, an adaptive control law based on a logistic function was adopted for the VDC and VIC, so as to avoid the consumption or saturation of state of charge (SOC). Finally, the typical regional power grid in Matlab/Simulink was simulated. The results show that the proposed integrated control can improve the quality of frequency effectively and reduce the percentage of conventional generator operations obviously.
|
Received: 21 December 2018
Published: 29 May 2019
|
|
|
|
|
[1] 赵嘉兴, 高伟, 上官明霞, 等. 风电参与电力系统调频综述[J]. 电力系统保护与控制, 2017, 45(21): 157-169. Zhao Jiaxing, Gao Wei, Shangguan Mingxia, et al.Review on frequency regulation technology of power grid by wind farm[J]. Power System Protection and Control, 2017, 45(21): 157-169. [2] 李欣然, 黄际元, 陈远扬, 等. 大规模储能电源参与电网调频研究综述[J]. 电力系统保护与控制, 2016, 44(7): 145-153. Li Xinran, Huang Jiyuan, Chen Yuanyang, et al.Review on large-scale involvement of energy storage in power grid fast frequency regulation[J]. Power System Protection and Control, 2016, 44(7): 145-153. [3] 李建林, 马会萌, 惠东. 储能技术融合分布式可再生能源的现状及发展趋势[J]. 电工技术学报, 2016, 31(14): 1-10. Li Jianlin, Ma Huimeng, Hui Dong.Present development condition and trends of energy storage technology in the integration of distributed renewable energy[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 1-10. [4] 田书欣, 程浩忠, 曾平良, 等. 基于调频层面的风电弃风分析[J]. 电工技术学报, 2015, 30(7): 18-26. Tian Shuxin, Cheng Haozhong, Zeng Pingliang, et al.Analysis on wind power curtailment at frequency adjustment level[J]. Transactions of China Elec- trotechnical Society, 2015, 30(7): 18-26. [5] 胡泽春, 谢旭, 张放, 等. 含储能资源参与的自动发电控制策略研究[J]. 中国电机工程学报, 2014, 34(29): 5080-5087. Hu Zechun, Xie Xu, Zhang Fang, et al.Research on automatic generation control strategy incorporating energy storage resources[J]. Proceedings of the CSEE, 2014, 34(29): 5080-5087. [6] 孙冰莹, 杨水丽, 刘宗歧, 等. 国内外兆瓦级储能调频示范应用现状分析与启示[J]. 电力系统自动化, 2017, 41(11): 8-16, 38. Sun Bingying, Yang Shuili, Liu Zongqi, et al.Analysis on present application of megawatt-scale energy storage in frequency regulation and its enlightenment[J]. Automation of Electric Power Systems, 2017, 41(11): 8-16, 38. [7] Li Yong, He Li, Liu Fang.Flexible voltage control strategy considering distributed energy storages for DC distribution network[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 163-172. [8] 邢鹏翔, 侍乔明, 王刚, 等. 风电机组虚拟惯量控制的响应特性及机理分析[J]. 高电压技术, 2018, 44(4):1302-1310. Xing Pengxiang, Shi Qiaoming, Wang Gang, et al.Response characteristics and mechanism analysis about virtual inertia control of wind generators[J]. High Voltage Engineering, 2018, 44(4): 1302-1310. [9] Knap V, Chaudhary S K, Stroe D L, et al.Sizing of an energy storage system for grid inertial response and primary frequency reserve[J]. IEEE Transactions on Power Systems, 2016, 31(5): 3447-3456. [10] 黄际元, 李欣然, 曹一家, 等. 考虑储能参与快速调频动作时机与深度的容量配置方法[J]. 电工技术学报, 2015, 30(12): 454-464. Huang Jiyuan, Li Xinran, Cao Yijia, et al.Capacity allocation of energy storage system considering its action moment and output depth in rapid frequency regulation[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 454-464. [11] 邓霞, 孙威, 肖海伟. 储能电池参与一次调频的综合控制方法[J]. 高电压技术, 2018, 44(4): 1157-1165. Deng Xia, Sun Wei, Xiao Haiwei.Integrated control strategy of battery energy storage system in primary frequency regulation[J]. High Voltage Engineering, 2018, 44(4): 1157-1165. [12] Guerrero J M, Vasquez J C, Matas J, et al.Hierarchical control of droop-controlled AC and DC microgrids-a general approach toward standar- dization[J]. IEEE Transactions on Industrial Electro- nics, 2011, 58(1): 158-172. [13] Li Peiqiang, Tan Zhuangxi, Zhou Yanji, et al.Secondary frequency regulation strategy with fuzzy logic method and self-adaptive modification of state of charge[J]. IEEE Access, 2018, 6: 43575-43585. [14] 吴晋波, 文劲宇, 孙海顺, 等. 基于储能技术的交流互联电网稳定控制方法[J]. 电工技术学报, 2012, 27(6): 261-267. Wu Jinbo, Wen Jinyu, Sun Haishun, et al.Study of control method for improving ac interconnected grid stability based on energy storage technology[J]. Transactions of China Electrotechnical Society, 2012, 27(6): 261-267. [15] 李妍, 荆盼盼, 王丽, 等. 通用储能系统数学模型及其PSASP建模研究[J]. 电网技术, 2012, 36(1): 51-57. Li Yan, Jin Panpan, Wang Li, et al.A mathematical model of versatile energy storage system and its modeling by power system analysis software package[J]. Power System Technology, 2012, 36(1): 51-57. [16] 钟诚, 周顺康, 严干贵, 等. 基于变减载率的光伏发电参与电网调频控制策略研究[J]. 电工技术学报, 2019, 34(5): 1013-1024. Zhong Cheng, Zhou Shunkang, Yan Gangui, et al.A new frequency regulation control strategy for photovoltaic power plant based on variable power reserve level control[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 1013-1024. [17] Liu Hui, Hu Zechun, Song Yonghua, et al.Decentra- lized vehicle-to-grid control for primary frequency regulation considering charging demands[J]. IEEE Transactions on Power Systems, 2013, 28(3): 3480-3489. [18] 李欣然, 邓涛, 黄际元, 等. 储能电池参与电网快速调频的自适应控制策略[J]. 高电压技术, 2017, 43(7): 2362-2369. Li Xinran, Deng Tao, Huang Jiyuan, et al.Battery energy storage systems self-adaptation control strategy in fast frequency regulation[J]. High Voltage Engineering, 2017, 43(7): 2362-2369. [19] Peas Lopes J A, Almeida P M R, Soares F J. Using vehicle-to-grid to maximize the integration of intermittent renewable energy resources in islanded electric grids[C]//International Conference on Clean Electrical Power, Capri, Italy, 2009: 290-295. [20] M Rocha Almeida P, A Peças Lopes J, J Soares F, et al. Electric vehicles participating in frequency control: operating islanded systems with large penetration of renewable power sources[C]//2011 IEEE Trondheim Power Tech, Trondheim, Norway, 2011: 1-6. [21] 丁明, 吴建锋, 朱承治, 等. 具备荷电状态调节功能的储能系统实时平滑控制策略[J]. 中国电机工程学报, 2013, 33(1): 22-29. Ding Ming, Wu Jianfeng, Zhu Chengzhi, et al.A real-time smoothing control strategy with SOC adjustment function of storage systems[J]. Pro- ceedings of the CSEE, 2013, 33(1): 22-29. [22] 业跃鸿. 火电厂一次调频功能的研究与应用[D]. 北京: 华北电力大学, 2011. [23] 金娜, 刘文颖, 曹银利, 等. 大容量机组一次调频参数对电网频率特性的影响[J]. 电力系统保护与控制, 2012, 40(1): 91-95. Jin Na, Liu Wenying, Cao Yinli, et al.Influence on the grid frequency characteristic by the parameters of primary frequency modulation of large capacity generator units[J]. Power System Protection and Control, 2012, 40(1): 91-95. [24] 李家壮, 艾欣, 胡俊杰. 电动汽车参与电网二次调频建模与控制策略研究[J]. 电网技术, 2019, 43(2): 495-503. Li Jiazhuang, Ai Xin, Hu Junjie.Supplementary frequency regulation modeling and control strategy with electric vehicles[J]. Power System Technology, 2019, 43(2): 495-503. [25] 黄际元, 李欣然, 常敏, 等. 考虑储能电池参与一次调频技术经济模型的容量配置方法[J]. 电工技术学报, 2017, 32(21): 112-121. Huang Jiyuan, Li Xinran, Chang Min, et al.Capacity allocation of bess in primary frequency regulation considering its technical-economic model[J]. Transa- ctions of China Electrotechnical Society, 2017, 32(21): 112-121. [26] Wen Xiankui, Zhang Shihai, Wu Peng, et al.Study on primary frequency modulation parameter setting of compressed air energy storage[C]//2018 2nd Inter- national Conference on Green Energy and Appli- cations (ICGEA), Singapore, 2018: 143-146. [27] 胡娟, 杨水丽, 侯朝勇, 等. 规模化储能技术典型示范应用的现状分析与启示[J]. 电网技术, 2015, 39(4): 879-885. Hu Juan, Yang Shuili, Hou Chaoyong, et al.Present condition analysis on typical demonstration appli- cation of large-scale energy storage technology and its enlightenment[J]. Power System Technology, 2015, 39(4): 879-885. [28] 张峰, 董晓明, 梁军, 等, 考虑目标分解及其互补平抑的风电场复合储能容量优化[J]. 电力系统自动化, 2014, 38(7): 9-15. Zhang Feng, Dong Xiaoming, Liang Jun, et al.Capacity optimization of hybrid energy storage system based on target decomposition and com- plementary fluctuations smoothing[J]. Automation of Electric Power Systems, 2014, 38(7): 9-15. [29] 李欣然, 黄际元, 陈远扬, 等. 基于灵敏度分析的储能电池参与二次调频控制策略[J]. 电工技术学报, 2017, 32(12): 224-233. Li Xinran, Huang Jiyuan, Chen Yuanyang, et al.Battery energy storage control strategy in secondary frequency regulation considering its action moment and depth[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 224-233. [30] Zhang Yingjun (Angela), Zhao Changhong, Tang Wanrong, et al. Profit maximizing planning and control of battery energy storage systems for primary frequency control[J]. IEEE Transactions on Smart Grid, 2018, 9(2): 712-723. [31] 迟丹丹. 基于模糊Logistic神经网络的分类问题研究[D]. 大连: 大连理工大学, 2016. |
|
|
|