|
|
Study on the High Frequency Voltage Oscillation of Thyristor During the Initial Stage of Pulse Capacitor Discharge |
Zhu Bofeng, Lu Junyong, Zhang Xiao, Dai Yufeng, Wang Xin |
National Key Laboratory of Science and Technology on Vessel Integrated Power SystemNaval University of Engineering Wuhan 430033 China |
|
|
Abstract For pulsed power supply module of an electromagnetic railgun system, thyristors that have the excellent ability to withstand high voltage and high pulse current is always selected as the pulse discharging switch to reduce the volume and improve energy storage density. Existing literatures have extensively researched the dynamic opening process of thyristor and improved the accuracy of thyristor equivalent circuit model. This paper studied a special voltage oscillation phenomenon caused by high frequency resonance in main circuit during pulse capacitor discharge. Firstly, the mechanism of the voltage oscillation was studied according to the configuration of the main circuit. Further, circuit simulation was carried out to verify the correctness of the theoretical analysis above. Finally, a feasible method was proposed to eliminate the voltage oscillation. The related conclusions in this paper have certain practical significance for optimizing the pulsed power module used in electromagnetic railgun system.
|
Received: 21 December 2018
Published: 27 March 2020
|
|
|
|
|
[1] Mueller C W, Hilibrand J.The ‘thyristor’-a new high-speed switching transistor[J]. IRE Transactions on Electron Devices, 1958, 5(1): 2-5. [2] Spahn E, Buderer G, Wegner V, et al.The application of thyristors as main switches in railguns[C]//IEEE International Pulsed Power Conference, Albuquerque, USA, 1993: 1-6. [3] Pastore R, Kingsley L, Singh H, et al.Reverse blocking capability of symmetric SCRs at high current and high voltage reversals[C]//IEEE International Pulsed Power Conference, Albuquerque, USA, 1995: 1-6. [4] McNab I R. Developments in pulsed power tech- nology[J]. IEEE Transactions on Magnetics, 2001, 37(1): 375-378. [5] McNab I R. Large-scale pulsed power opportunities and challenges[J]. IEEE Transactions on Plasma Science, 2014, 42(5): 1118-1127. [6] Wellman A, Leutwyler R, Waldmeyer J.High current, high voltage solid state discharge switches for electromagnetic launch applications[C]//International Symposium on Electromagnetic Launch Technology, Victoria, Canada, 2008: 1-5. [7] Cliff L M, Lauritzen P O, Turkes P, et al.A physically-based lumped-charge SCR model[C]// IEEE Power Electronics Specialists Conference, Washington, USA, 1993: 53-59. [8] Ramezani E, Spahn E, Buderer G.A novel high current rate SCR for pulsed power applications[C]// IEEE International Pulsed Power Conference, Baltimore, USA, 1997: 71-74. [9] Podlesak T F, Singh H, Behr S, et al.A compact lightweight 125mm thyristor for pulse power appli- cations[C]//International Power Modulator Symposium, Boca Raton, USA, 1996: 43-46. [10] Spahn E, Buderer G, Ramezani E.Low weight and size pulse forming unit, switched by a novel high current rate SCR[C]//IEEE International Pulsed Power Conference, Baltimore, USA, 1997: 1133-1138. [11] Podlesak T F, Singh H, Schneider S, et al.High peak current burst repetitive operation of a 125mm thyristor[C]//IEEE International Pulsed Power Conference, Baltimore, USA, 1997: 396-404. [12] Schneider S, Podlesak T F.Multichip thyristor performance[C]//Power Modulator Symposium, Norfolk, USA, 2000: 58-61. [13] Wisken H G, Weise T H G G. Critical components for high energy density capacitor modules[J]. IEEE Transactions on Magnetics, 2003, 39(1): 446-450. [14] Weise T H G G, Schuenemann B, Keller R, et al. Performance spectrum of optical triggered thyristor switches for electric weapon sys-tem[C]//Symposium on Electromagnetic Launch Technology, Snowbird, USA, 2004: 252-254. [15] Spahn E, Sterzelmeier K, Gauthier-Blum C, et al.50kJ ultra-compact pulsed-power supply unit for active protection launcher system[J]. IEEE Transa- ctions on Magnetics, 2009, 45(1): 462-466. [16] Liebfried O, Brommer V, Scharnholz S, et al.Refurbishment of a 30-MJ-pulsed power supply for pulsed power application[J]. IEEE Transactions on Plasma Science, 2013, 41(5): 1285-1289. [17] 郭帆, 何小平, 王海洋, 等. 晶闸管触发开通特性[J]. 强激光与粒子束, 2012, 24(10): 2483-2486. Guo Fan, He Xiaoping, Wang Haiyang, et al.Switching characteristics of triggered thyristor[J]. High Power Laser and Partical Beams, 2012, 24(10): 2484-2487. [18] 王晨, 庄劲武, 张超, 等. 串联晶闸管在大脉冲电流下的开通过程研究[J]. 电机与控制学报, 2014, 18(3): 14-19. Wang Chen, Zhuang Jinwu, Zhang Chao, et al.Research of series thyristor turn-on process with high pulse current[J]. Electric Machines and Control, 2014, 18(3): 14-19. [19] 杨东升, 马占超, 高莜婷, 等. 交流接触器晃电保护无隙切换拓扑结构研究[J]. 电工技术学报, 2018, 33(11): 2431-2437. Yang Dongsheng, Ma Zhanchao, Gao Xiaoting, et al.Research on voltage sag protection topology based on seamless switching for AC contactors[J]. Transaction of China Electrotechnical Society, 2018, 33(11): 2431-2437. [20] 徐尘, 付立军, 卢露. 兆瓦级脉冲间歇整流装置热分析[J]. 电工技术学报, 2018, 33(12): 2751-2757. Xu Chen, Fu Lijun, Lu Lu.Thermal analysis of megawatt pulse intermittent rectifier[J]. Transaction of China Electrotechnical Society, 2018, 33(12): 2751-2757. [21] 陈德志, 房立伟, 赵文亮, 等. 基于晶闸管及IGBT的新型两电平逆变器[J]. 电工技术学报, 2017, 32(2): 168-175. Chen Dezhi, Fang Liwei, Zhao Wenliang, et al.Novel two-level inverter based on thyristor and IGBT[J]. Transaction of China Electrotechnical Society, 2017, 32(2): 168-175. [22] 张春明, 姜齐荣, 赵争鸣. 晶闸管型互联装置多时间尺度转换等效模型[J]. 电工技术学报, 2017, 32(14): 27-33. Zhang Chunming, Jiang Qirong, Zhao Zhengming.Equivalent model of the thyristor-type inter- connector for multi-time scale transform[J]. Transa- ction of China Electrotechnical Society, 2017, 32(14): 27-33. [23] 邱清泉, 肖立业, 张志丰, 等. 应用于谐振型限流器的双分裂铁心电抗器研究[J]. 电工技术学报, 2017, 32(3): 165-171. Qiu Qingquan, Xiao Liye, Zhang Zhifeng, et al.Investigation of double-splitting iron reactor used in resonant type fault current limiter[J]. Transaction of China Electrotechnical Society, 2017, 32(3): 165-171. [24] Rosseel K, Boon W, Herlach F.Pulse shape modification for capacitor driven pulsed magnets[J]. Measurements Science & Technology, 2003, 14(7): 1075-1082. [25] Rosseel K, Dolron P A J, Nelemans L P, et al. The pulsed-field facility at HFML, commissioning and first results[J]. IEEE Transactions on Applied Super- conductivity, 2006, 16(2): 1664-1667. |
|
|
|