[1] Wei Qiao, Lu Dingguo.A survey on wind turbine condition monitoring and fault diagnosis—part I: components and subsystems[J]. IEEE Transactions on Industrial Electronics, 2015, 62(10): 6546-6557.
[2] Milborrow D.Operation and maintenance costs compared and revealed[J]. Wind Newsletter, 2006, 19(3): 1-3.
[3] 杭俊, 张建忠, 程明, 等. 风力发电系统状态监测和故障诊断技术综述[J]. 电工技术学报, 2013, 28(4): 262-271.
Hang Jun, Zhang Jianzhong, Cheng Ming, et al.An overview of condition monitoring and fault diagnostic for wind energy conversion system[J]. Transactions of China Electrotechnical Society, 2013, 28(4): 261-271.
[4] Hameed Z, Hong Y S, Cho Y M, et al.Condition monitoring and fault detection of wind turbines and related algorithms: a review[J]. Renewable & Sustainable Energy Reviews, 2009, 13(1): 1-39.
[5] Wei X, Verhaegen M, Engelen T V.Sensor fault detection and isolation for wind turbines based on subspace identification and kalman filter techni- ques[J]. International Journal of Adaptive Control and Signal Processing, 2010, 24(8): 687-707.
[6] Sanchez H, Escobet T, Puig V, et al.Fault diagnosis of an advanced wind turbine benchmark using interval- based arrs and observers[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3783-3793.
[7] Chan C W, Song Hua, Zhang Hongyue.Application of fully decoupled parity equation in fault detection and identification of DC motors[J]. IEEE Transa- ctions on Industrial Electronics, 2006, 53(4): 1277-1284.
[8] Caselitz P, Bussel G W, Spinato F.Rotor condition monitoring for improved operational safety of offshore wind energy converters[J]. Journal of Solar Energy Engineering, 2005, 127(2): 253-261.
[9] 李东东, 周文磊, 郑小霞, 等. 基于自适应EEMD和分层分形维数的风电机组行星齿轮箱故障检测[J]. 电工技术学报, 2017, 32(22): 233-241.
Li Dongdong, Zhou Wenlei, Zheng Xiaoxia, et al.Diagnosis of wind turbine planetary gearbox faults based on adaptive EEMD and hierarchical fractal dimension[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 233-241.
[10] 杨明, 董传洋, 徐殿国. 基于电机驱动系统的齿轮故障诊断方法综述[J]. 电工技术学报, 2016, 31(4): 132-140.
Yang Ming, Dong Chuanyang, Xu Dianguo.Review of gear fault diagnosis methods based on motor drive system[J]. Transactions of China Electrotechnical Society, 2016, 31(4): 132-140.
[11] Soua S, Lieshout P V, Perera A, et al.Determination of the combined vibrational and acoustic emission signature of a wind turbine gearbox and generator shaft in service as a pre-requisite for effective condition monitoring[J]. Renewable Energy, 2013, 51(2): 175-181.
[12] 沈小军, 付雪姣, 周冲成, 等. 风电机组风速-功率异常运行数据特征及清洗方法[J]. 电工技术学报, 2018, 33(14): 3353-3361.
Shen Xiaojun, Fu Xuejiao, Zhou Chongcheng, et al.Characteristics of outliers in wind speed-power operation data of wind turbines and its cleaning method[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3353-3361.
[13] Cross P, Ma X D.Nonlinear system identification for model-based condition monitoring of wind turbines[J]. Renewable Energy, 2014, 71(11): 166-175.
[14] Yampikulsakul N, Byon E, Huang S, et al.Condition monitoring of wind power system with nonparametric regression analysis[J]. IEEE Transactions on Energy Conversion, 2014, 29(2): 288-299.
[15] Sun Peng, Li Jian, Wang Caisheng, et al.A generalized model for wind turbine anomaly identification based on SCADA data[J]. Applied Energy, 2016, 168: 550-567.
[16] Skrimpas G A, Sweeney C W, Marhadi K S, et al.Employment of kernel methods on wind turbine power performance assessment[J]. IEEE Transactions on Sustainable Energy, 2015, 6(3): 698-706.
[17] Kusiak A, Verma A.A data-mining approach to monitoring wind turbines[J]. IEEE Transactions on Sustainable Energy, 2011, 3(1): 150-157.
[18] Bangalore P, Tjernberg L B.An artificial neural network approach for early fault detection of gearbox bearings[J]. IEEE Transactions on Smart Grid, 2017, 6(2): 980-987.
[19] Zaher A, Mcarthur S D J, Infield D G, et al. Online wind turbine fault detection through automated SCADA data analysis[J]. Wind Energy, 2010, 12(6): 574-593.
[20] 尹诗, 余忠源, 孟凯峰, 等. 基于非线性状态估计的风电机组变桨控制系统故障识别[J]. 中国电机工程学报, 2014, 34(增刊1): 160-165.
Yin Shi, Yu Zhongyuan, Meng Kaifeng, et al.Fault identification of pitch control system of wind turbine based on nonlinear state estimation[J]. Proceedings of the CSEE, 2014, 34(S1): 160-165.
[21] Peng G, Infield D, Yang X.Wind turbine generator condition-monitoring using temperature trend analysis[J]. IEEE Transactions on Sustainable Energy, 2011, 3(1): 124-133.
[22] Schlechtingen M, Santos I F, Achiche S.Wind turbine condition monitoring based on SCADA data using normal behavior models. Part 1: system description[J]. Applied Soft Computing, 2013, 13(1): 259-270.
[23] Kruger M, Ding S X, Haghani A, et al.A data-driven approach for fault diagnosis in gearbox of wind energy conversion system[C]//Control and Fault- Tolerant Systems, Nice, France, 2014: 359-364.
[24] Wang Long, Zhang Zijun, Xu Jia, et al.Wind turbine blade breakage monitoring with deep autoencoders[J]. IEEE Transactions on Smart Grid, 2018, 9(4): 2824-2833.
[25] 刘辉海, 赵星宇, 赵洪山, 等. 基于深度自编码网络模型的风电机组齿轮箱故障检测[J]. 电工技术学报, 2017, 32(17): 156-163.
Liu Huihai, Zhao Xingyu, Zhao Hongshan, et al.Fault detection of wind turbine gearbox based on deep autoencoder network[J]. Transactions of China Electrotechnical Society, 2017, 32(17): 156-163.
[26] Vincent P, Larochelle H, Bengio Y, et al.Extracting and composing robust features with denoising auto- encoders[C]//International Conference on Machine Learning, Helsinki, 2008: 1096-1103.
[27] 代杰杰, 宋辉, 杨祎, 等. 基于栈式降噪自编码器的输变电设备状态数据清洗方法[J]. 电力系统自动化, 2017, 41(12): 224-230.
Dai Jiejie, Song Hui, Yang Yi, et al.Cleaning method of status data of power transmission and trans- formation equipment based on stacked denoising autoencoders[J]. Automation of Electric Power Systems, 2017, 41(12): 224-230.
[28] Ku W, Storer R H, Georgakis C.Disturbance detection and isolation by dynamic principal component analysis[J]. Chemometrics and Intelligent Laboratory systems, 1995, 30(1): 179-196.
[29] Vincent P, Larchelle H, Lajoie I, et al.Stacked denoising autoencoders: Learning useful representa- tions in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11(12): 3371-3408.
[30] Chandra B, Sharma R K.Adaptive noise schedule for denoising autoencoder[C]//Proceedings of the 21st International Conference on Neural Information, Kuching, Malaysia, 2014: 535-542.
[31] Geras K J, Sutton C.Scheduled denoising auto- encoders[C]//International Conference on Learning Representations, San Diego, USA, 2015: 1-11.
[32] Wand M P, Jones M C.Kernel smoothing[M]. London: Chapman and Hall, 1995. |