|
|
A Novel Wide Stability Control Strategy of Constant Power Load Power Converter Based on the Analysis of Lyapunov Indirect Method |
Pang Shengzhao1, Huangfu Yigeng1, Guo Liang1, Babak Nahid-Mobarakeh2, Ma Rui1 |
1. College of Automation Northwestern Polytechnical University Xi’an 710068 China; 2. Institute of Electrical and Mechanical Engineering Lorraine University Nancy 54516 France |
|
|
Abstract In aerospace power supply system, with the increasing of the power converter loads and motor loads, constant power loads in the proportion of electricity equipment are growing. Because of the internal closed-loop control of this kind of loads, constant power loads show the constant power characteristic. This characteristic is one of the main causes of the system instability. Moreover, due to the size and weight limits, this kind of independent power supply system used in aerospace puts forward higher requirements for the design of the converter. A method of direct injecting high frequency components is presented in this paper based on inductor current to the duty cycle. This method not only reduces the size of filter capacitor, but also suppresses the instability caused by constant power loads. In this paper, the Boost converter designed for aircraft application is taken as an example. The state space model of the system is established, and the stability of the system is analyzed by Lyapunov. At last, the simulation and experimental results prove the correctness and feasibility of the proposed control strategy. In the same power output condition, this duty cycle compensation technology can reduce the filter capacitance by about 8 times.
|
Received: 28 December 2015
Published: 01 August 2017
|
|
|
|
|
[1] 张洁. 新一代大飞机变频电力系统的结构、优化和挑战[J]. 电工技术学报, 2012, 27(6): 53-62. Zhang Jie. Architecture optimization and design challenges of VF-power system of future large aircraft[J]. Transactions of China Electrotechnical Society, 2012, 27(6): 53-62. [2] 张巍, 尚晓磊, 周元钧, 等. 一种适用于航空电力作动器负载的三相PWM整流器最大功率控制[J]. 电工技术学报, 2011, 26(8): 91-98. Zhang Wei,Shang Xiaolei,Zhou Yuanjun, et a1. A maximum power control method of three-phase voltage source rectifiers adapted to aircraft electric actuator load[J]. Transactions of China Electro- technical Society, 2011, 26(8): 91-98. [3] 陈仲, 陈淼, 王志辉. 400Hz有源滤波器闭环控制建模及其动态性能分析[J]. 电工技术学报, 2014, 29(12): 50-57. Chen Zhong, Chen Miao, Wang Zhihui. Closed-loop control modeling and dynamic performance analysis of 400Hz active filter[J]. Transactions of China Electrotechnical Society, 2014, 29(12): 50-57. [4] 刘欣博, 周元钧, 张巍. 具有阻尼滤波器的恒功率负载系统在大扰动下的稳定性[J]. 电工技术学报, 2011, 26(增刊1): 154-160. Liu Xinbo, Zhou Yuanjun, Zhang Wei. Large signal stability criteria for constant power loads with damped filters[J]. Transactions of China Electro- technical Society, 2011, 26(S1): 154-160. [5] Wu M, Lu D D C. A novel stabilization method of LC input filter with constant power loads without load performance compromise in DC microgrids[J]. IEEE Transactions on Industrial Electronics, 2015, 62(7): 4552-4562. [6] 谢占明, 郭宏, 黄建. 基于阻尼补偿的直流发电机带恒功率负载系统稳定性分析[J]. 航空学报, 2011, 32(11): 2055-2061. Xie Zhanming, Guo Hong, Huang Jian. Stability analysis on the system of a DC generator driving constant power loads based on damping com- pensation[J]. Aeronautica et Astronautica Sinica, 2011, 32(11): 2055-2061. [7] Jamshidpour E, Nahid-Mobarakeh B, Poure P, et al. Distributed active resonance suppression in hybrid DC power systems under unbalanced load condi- tions[J]. IEEE Transactions on Power Electronics, 2013, 28(4): 1833-1842. [8] 支娜, 张辉, 肖曦. 提高直流微电网动态特性的改进下垂控制策略研究[J]. 电工技术学报, 2016, 31(3): 31-39. Zhi Na, Zhang Hui, Xiao Xi. Research on the improved droop control strategy for improving the dynamic characteristics of DC microgrid[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(3): 31-39. [9] Magne P, Nahid-Mobarakeh B, Pierfederici S. Dynamic consideration of DC microgrids with constant power loads and active damping system—a design method for fault-tolerant stabilizing system[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014, 2(3): 562-570. [10] Hu H, Xing Y. Design considerations and fully digital implementation of 400Hz active power filter for aircraft applications[J]. IEEE Transactions on Industrial Electronics, 2014, 61(8): 3823-3834. [11] Saublet L M, Gavagsaz-Ghoachani R, Nahid- Mobarakeh B, et al. Stability analysis, discrete time modeling and active stabilization of DC-DC converter, taking into account the load dynamics[C]// IEEE Transportation Electrification Conference and Expo, Dearborn, MI, USA, 2015: 1-6. [12] Lee W J, Sul S K. DC-link voltage stabilization for reduced DC-link capacitor inverter[J]. IEEE Transa- ctions on Industry Applications, 2014, 50(1): 404- 414. [13] 杜韦静, 张军明, 钱照明. Buck变流器级联系统直流母线电压补偿控制策略[J]. 电工技术学报, 2015, 30(1): 135-142. Du Weijing, Zhang Junming, Qian Zhaoming. Compensation methodology for DC bus voltage of cascaded system formed by Buck converters[J]. Transactions of China Electrotechnical Society, 2015, 30(1): 135-142. [14] 贾鹏宇, 李艳, 郑琼林. 电压型级联系统中减小源变换器输出阻抗的有源阻尼控制方法[J]. 电工技术学报, 2015, 30(8): 71-82. Jia Pengyu, Li Yan, Zheng Qionglin. An active damping method to reduce output impedance of converters in voltage source cascaded system[J]. Transactions of China Electrotechnical Society, 2015, 30(8): 71-82. [15] 皇甫宜耿, 马瑞卿, 赵冬冬, 等. 电源变换技术及应用[M]. 北京: 人民邮电出版社, 2015. [16] Cespedes M, Xing L, Sun J. Constant-power load system stabilization by passive damping[J]. IEEE Transactions on Power Electronics, 2011, 26(7): 1832-1836. [17] 彭咏龙, 朱劲波, 李亚斌. 基于电感电压反馈和输入整形技术的LC滤波器混合阻尼控制[J]. 电力系统保护与控制, 2015, 43(2): 103-107. Peng Yonglong, Zhu Jinbo, Li Yabin. Hybrid damping control based on the LC filter inductor voltage feedback and input shaping techniques[J]. Power System Protection and Control, 2015, 43(2): 103-107. [18] 彭咏龙, 黄潇潇, 李亚斌. 三相BUCK SVPWM整流器LC振荡阻尼混合控制[J]. 电力系统保护与控制, 2014, 42(1): 90-95. Peng Yonglong, Huang Xiaoxiao, Li Yabin. Damping of LC oscillation using a hybrid combination approach for three-phase Buck-type SVPWM rectifier[J]. Power System Protection and Control, 2014, 42(1): 90-95. [19] Magne P, Nahid-Mobarakeh B, Pierfederici S. DC-link voltage large signal stabilization and transient control using a virtual capacitor[C]//IEEE Industry Applications Society Annual Meeting, Houston, TX, USA, 2010: 1-8. [20] Lu X, Sun K, Huang L, et al. Virtual impedance based stability improvement for DC microgrids with constant power loads[C]//IEEE in Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 2014: 2670-2675. [21] 皇甫宜耿, 吴宇, 马瑞卿. 一种鲁棒无抖颤滑模控制的Buck-Boost变换器[J]. 西北工业大学学报, 2014, 32(2): 285-289. Huangfu Yigeng, Wu Yu, Ma Ruiqing. A robust chattering-avoiding sliding mode control for Buck- Boost converter[J]. Journal of Northwestern Poly- technical University, 2014, 32(2): 285-289. [22] 茅靖峰, 吴爱华, 吴国庆, 等. 基于扩张状态观测的永磁直驱风力发电系统MPPT自适应滑模控制[J]. 电力系统保护与控制, 2014, 42(18): 58-65. Mao Jingfeng, Wu Aihua, Wu Guoqing, et a1. Adaptive sliding mode MPPT control for PMSG- based wind energy conversion systems based on extended state observer[J]. Power System Protection and Control, 2014, 42(18): 58-65. [23] Kondratiev I, Santi E, Dougal R. Synergetic control for DC-DC Buck converters with constant power load[C]//IEEE 35th Annual Power Electronics Specialists Conference, Aachen, Germangy, 2004: 3758-3764. [24] Marx D, Pierfederici S, Nahid-Mobarakeh B, et al. Contribution to determination of domain of attraction in power systems: application to drives with input filter[C]//IEEE Industry Applications Society, Annual Meeting, Houston, TX, USA, 2009: 1-8. [25] Mungporn P, Sikkabut S, Yodwong B, et al. Photovoltaic power control based on differential flatness approach of multiphase interleaved Boost converter for grid connected applications[C]//IEEE International Conference on Clean Electrical Power (ICCEP), Taormina, Italy, 2015: 574-579. [26] Pietiläinen K, Harnefors L, Petersson A. DC-link stabilization and voltage sag ride-through of inverter drives[J]. IEEE Transactions on Industrial Elec- tronics, 2006, 53(4): 1261-1268. |
|
|
|