Abstract:The electric field sensor based on the electromagnetically induced transparency (EIT) effect and the Stark effect of Rydberg atom (Rydberg sensor) has overcome the limitations of traditional sensors that require standard calibration fields and complex traceability chains. It directly traces the electric field value to fundamental physical constants using the inherent energy level structure and spectral features of atoms. Quantum sensing inherently includes calibration capabilities, making it possible to achieve non-invasive, non-destructive, and precise electric field measurements. Firstly, this article elaborates on the quantum coherent effects of Rydberg atoms interacting with external fields, including the EIT effect and the Stark effect. The EIT effect is a nonlinear quantum coherent optical effect that arises from the interaction of lasers with atoms, resulting in quantum interference between two laser beams and atoms, leading to the formation of a narrow transparent window near the resonant frequency of the detection light field, i.e., the EIT spectral peak. Furthermore, under the influence of low frequency external field, Rydberg atom experience fine-level splitting, causing a frequency shift in the EIT spectrum, known as the Stark frequency shift. By constructing a mathematical model between electric field strength and Stark frequency shift, Rydberg atoms enable all-optical and non-destructive electric field measurements. Secondly, the Rydberg atom sensing measurement system is constructed in the experiment, using two tunable semiconductor lasers to generate weak probe laser at 852 nm, 500 μW, and strong coupling laser at 509 nm, 50 mW. These lasers propagate in opposite directions into a glass cell to excite atoms to Rydberg states. Based on the EIT effect of Rydberg atoms, the change in the atomic spectra under the influence of the external field is observed. The main peak and sub-peaks form a frequency scale with a strict frequency interval, converting the oscilloscope's horizontal axis into a frequency axis, thus transforming electric field values into optical frequency responses. Upon establishing the Rydberg sensor measurement system, error sources are analyzed, and various uncertainty components of the sensor are defined and calculated. These mainly include uncertainties introduced by Rydberg atomic polarization, EIT spectral frequency shift, field inhomogeneity, and other factors. By combining the uncertainties of several factors, the combined relative standard uncertainty is 3.885%, and conservatively, the extended uncertainty is 7.77% when the inclusion probability is greater than 95.45%, in this process, the main influencing factors of uncertainty are identified and recommendations for reducing their impact are proposed. In principle, polarizability and EIT spectral frequency shift uncertainties can be reduced through more advanced computational methods and more precise lasers and photodetectors in the future. Additionally, reducing the field inhomogeneity between plates and optimizing the external optical path design can significantly reduce the overall system uncertainty. Finally, the linearity of the Rydberg sensor is being validated. A series of electric field values is set in the experiment, and a corresponding series of spectral frequency shifts is measured. The least squares method is employed for curve fitting, and the results indicate that the sensor's fitted curve aligns with the theoretical analysis, following a relationship of Δ∝E2. Further consideration of experimental environmental noise yields the fitted relationship: Δnoise=80.414E2-2.72, the constant term represents that Δnoise encompasses a background noise spectrum of 2.72 MHz at zero field, and the coefficient of determination reaches 0.996 9.
肖冬萍, 石筑鑫, 阎晟, 张淮清, 余传祥. 里德堡原子电场传感器的自校准性解析及测量不确定度评定[J]. 电工技术学报, 2024, 39(17): 5321-5330.
Xiao Dongping, Shi Zhuxin, Yan Sheng, Zhang Huaiqing, Yu Chuanxiang. Self-Calibration Analysis and Measuring Uncertainty Assessment of Electric Field Sensors Based on Rydberg Atom. Transactions of China Electrotechnical Society, 2024, 39(17): 5321-5330.
[1] 王祎凡, 任春光, 张佰富, 等. 基于电压源型PWM整流电路的输电线路测量与感应取电一体化互感器实现方法[J]. 电工技术学报, 2023, 38(1): 15-25. Wang Yifan, Ren Chunguang, Zhang Baifu, et al.Implementation method of integrated transformer for transmission line measurement and inductive power taking based on voltage source PWM rectifier[J]. Transactions of China Electrotechnical Society, 2023, 38(1): 15-25. [2] 姜涛, 李雪, 李国庆, 等. 含多端柔性直流的交直流电力系统静态电压稳定域构建方法[J]. 电工技术学报, 2022, 37(7): 1746-1759. Jiang Tao, Li Xue, Li Guoqing, et al.A predictor-corrector algorithm for forming voltage stability region of hybrid AC/DC power grid with inclusion of VSC-MTDC[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1746-1759. [3] 高浩予, 任瀚文, 李庆民, 等. 适配光电子学空间电荷测量方法的弹光传感器设计与测试验证[J]. 电工技术学报, 2023, 38(3): 587-598. Gao Haoyu, Ren Hanwen, Li Qingmin, et al.Design and measurement verification of elasto-optical sensor adapted to space charge measurement method based on optoelectronics[J]. Transactions of China Electrotechnical Society, 2023, 38(3): 587-598. [4] 雷煜卿, 焦飞, 张树华, 等. MEMS电场传感器测试技术研究及进展[J]. 高压电器, 2022, 58(7): 57-63. Lei Yuqing, Jiao Fei, Zhang Shuhua, et al.Research and development of MEMS electric field sensor testing technology[J]. High Voltage Apparatus, 2022, 58(7): 57-63. [5] 吴桂芳, 崔勇, 刘宏, 等. 基于差分进化算法的三维电场传感器解耦标定方法[J]. 电工技术学报, 2021, 36(19): 3993-4001. Wu Guifang, Cui Yong, Liu Hong, et al.Decoupling calibration method of 3D electric field sensor based on differential evolution algorithm[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 3993-4001. [6] 李振华, 李红斌, 张秋雁, 等. 一种高压电子式电流互感器在线校验系统[J]. 电工技术学报, 2014, 29(7): 229-236. Li Zhenhua, Li Hongbin, Zhang Qiuyan, et al.An online calibration system for high voltage electronic current transformers[J]. Transactions of China Electrotechnical Society, 2014, 29(7): 229-236. [7] IEEE Power and Energy Society. Procedures for measurement of power frequency electric and magnetic fields from AC power lines: IEEE 644—2019[S]. IEEE, 2019. [8] IEEE Electromagnetic Compatibility Society. Calibration of electromagnetic field sensors and probes (excluding antennas) from 9 kHz to 40 GHz: IEEE 1309—2013[S]. IEEE, 2013. [9] Gallagher T F.Rydberg Atoms[M]. Cambridge: Cambridge University Press, 1994. [10] Jing Mingyong, Hu Ying, Ma Jie, et al.Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nature Physics, 2020, 16(9): 911-915. [11] Grimmel J, Mack M, Karlewski F, et al.Measurement and numerical calculation of Rubidium Rydberg Stark spectra[J]. New Journal of Physics, 2015, 17(5): 53005. [12] Holloway C L, Prajapati N, Sherman J A, et al.Electromagnetically induced transparency based Rydberg-atom sensor for traceable voltage measurements[J]. AVS Quantum Science, 2022, 4(3): 034401. [13] Ma L, Paradis E, Raithel G.DC electric fields in electrode-free glass vapor cell by photo-illumination[J]. Optics Express, 2020, 28(3): 3676. [14] 焦月春, 赵建明, 贾锁堂. 基于Rydberg原子的超宽频带射频传感器[J]. 物理学报, 2018, 67(7): 137-145. Jiao Yuechun, Zhao Jianming, Jia Suotang.Broadband Rydberg atom-based radio-frequency field sensor[J]. Acta Physica Sinica, 2018, 67(7): 137-145. [15] Liu Bang, Zhang Lihua, Liu Zongkai, et al.Highly sensitive measurement of a megahertz rf electric field with a rydberg-atom sensor[J]. Physical Review Applied, 2022, 18: 014045. [16] Sedlacek J A, Schwettmann A, Kübler H, et al.Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell[J]. Physical Review Letters, 2013, 111(6): 063001. [17] Holloway C L, Gordon J A, Jefferts S, et al.Broadband rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(12): 6169-6182. [18] Gordon J A, Holloway C L, Schwarzkopf A, et al.Millimeter wave detection via Autler-Townes splitting in rubidium Rydberg atoms[J]. Applied Physics Letters, 2014, 105(2): 024104 [19] Wade C G, Šibalić N, de Melo N R, et al. Real-time near-field terahertz imaging with atomic optical fluorescence[J]. Nature Photonics, 2017, 11(1): 40-43. [20] Sedlacek J A, Schwettmann A, Kübler H, et al.Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature Physics, 2012, 8(11): 819-824. [21] Holloway C L, Simons M T, Gordon J A, et al.Electric field metrology for SI traceability: systematic measurement uncertainties in electromagnetically induced transparency in atomic vapor[J]. Journal of Applied Physics, 2017, 121(23): 233106. [22] Holloway C L, Simons M T, Gordon J A, et al.Atom-based RF electric field metrology: from self-calibrated measurements to subwavelength and near-field imaging[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(2): 717-728. [23] 李伟, 张淳刚, 张好, 等. 基于里德伯原子AC-Stark效应的工频电场测量[J]. 激光与光电子学进展, 2021, 58(17): 144-148. Li Wei, Zhang Chungang, Zhang Hao, et al.Power-frequency electric field measurement based on AC-stark effect of rydberg atoms[J]. Laser & Optoelectronics Progress, 2021, 58(17): 144-148. [24] 张淳刚, 李伟, 张好, 等. 基于调制射频场电磁诱导透明光谱的工频电场测量[J]. 光子学报, 2021, 50(6): 162-168. Zhang Chungang, Li Wei, Zhang Hao, et al.Power frequency electric field measurement based on electromagnetic induced transparent spectrum under radio frequency field[J]. Acta Photonica Sinica, 2021, 50(6): 162-168. [25] 崔帅威, 彭文鑫, 李松浓, 等. 基于里德堡原子的工频电场测量[J]. 高电压技术, 2023, 49(2): 644-650. Cui Shuaiwei, Peng Wenxin, Li Songnong, et al.Power frequency electric field measurement based on Rydberg atoms[J]. High Voltage Engineering, 2023, 49(2): 644-650. [26] Bai Jingxu, Bai Suying, Han Xiaoxuan, et al.Precise measurements of polarizabilities of Cesium nS Rydberg states in an ultra-cold atomic ensemble[J]. New Journal of Physics, 2020, 22(9): 093032. [27] Khadjavi A, Lurio A, Happer W.Stark effect in the excited states of Rb, Cs, Cd, and Hg[J]. Physical Review, 1968, 167(1): 128-135. [28] Zimmerman M L, Littman M G, Kash M M, et al.Stark structure of the Rydberg states of alkali-metal atoms[J]. Physical Review A, 1979, 20(6): 2251-2275. [29] Mohapatra A K, Jackson T R, Adams C S.Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency[J]. Physical Review Letters, 2007, 98(11): 113003. [30] Feng Zhigang, Zhang Hao, Che Junling, et al.Collisional loss of cesium Rydberg atoms in a magneto-optical trap[J]. Physical Review A, 2011, 83(4): 042711. [31] 阎晟, 肖冬萍, 石筑鑫, 等. 原子热运动对电场量子测量的影响及修正方法[J]. 电工技术学报, 2024, 39(10): 2953-2960. Yan Sheng, Xiao Dongping, Shi Zhuxin, et al.Study on the influence of atomic thermal motion on quantum measurement of electric field and its correction method[J]. Transactions of China Electrotechnical Society, 2024, 39(10): 2953-2960. [32] Friedrich H.Theoretical Atomic Physics[M]. 4th ed. Cham: Springer, 2017. [33] Newell D B, Cabiati F, Fischer J, et al.The CODATA 2017 values of h, e, k, and NA for the revision of the SI[J]. Metrologia, 2018, 55(1): L13-L16. [34] Bussey L W, Burton F A, Bongs K, et al.Quantum shot noise limit in a rydberg RF receiver compared to thermal noise limit in a conventional receiver[J]. IEEE Sensors Letters, 2022, 6(9): 1-4. [35] 国家质量监督检验检疫总局, 国家标准化管理委员会. 测量不确定度评定与表示: GB/T 27418—2017 [S]. 北京: 中国标准出版社, 2018. [36] Deiglmayr J, Herburger H, Saßmannshausen H, et al.Precision measurement of the ionization energy of Cs I[J]. Physical Review A, 2016, 93(1): 013424. [37] Yerokhin V A, Buhmann S Y, Fritzsche S, et al.Electric dipole polarizabilities of Rydberg states of alkali-metal atoms[J]. Physical Review A, 2016, 94(3): 032503. [38] Steck D A. Cesium D Line Data[DB/OL]. (2019-11-21). http://steck.us/alkalidata. [39] Mao Ruiqi, Lin Yi, Yang Kai, et al.A high-efficiency fiber-coupled rydberg-atom integrated probe and its imaging applications[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(2): 352-356. [40] 李云超, 党峰, 辛红强, 等. 基于MEMS技术的原子气室封装工艺[J]. 仪表技术与传感器, 2023(2): 22-26. Li Yunchao, Dang Feng, Xin Hongqiang, et al.Atomic vapor cell packaging technology based on MEMS technology[J]. Instrument Technique and Sensor, 2023(2): 22-26.