Abstract:The primary performance of the fast control power supply for the experimental advanced superconducting Tokamak (EAST) is to quickly track the reference signal, realize the excitation of the load coil, and feedback control the vertical displacement of the plasma. The load coil of the EAST fast control power supply is affected by the internal components and the plasma in the vacuum. The coil inductance will fluctuate slowly in a small range, and there will be mutual inductance electromotive force interference on the coil. The traditional proportional-integral (PI) control has shortcomings in the current tracking control process. Sliding mode control has been widely used due to its advantages of simple control and strong robustness. To realize disturbance suppression and cope with load fluctuation, a discrete integral sliding mode control method with disturbance suppression is proposed based on the system state equation of the EAST fast control power supply. The control disturbance caused by inductance fluctuation and mutual inductance electromotive force on the load side is equivalent to lumped disturbance. The observation of lumped disturbance is realized using a sliding mode disturbance observer. In order to compensate for the lumped disturbance on the load side, a discrete integral sliding mode controller and a sliding mode disturbance observer are combined to perform feedforward compensation control. A variable gain observer structure is designed based on the observed current error and the tracking current error to balance the chattering magnitude and convergence speed in the sliding mode control process. Thus, the gain is adaptively adjusted with the observed current error. According to the observer error stability conditions, the adaptive adjustment range of the observer gain is determined. The stability of the designed sliding mode controller is analyzed to ensure sufficient convergence of the sliding mode controller. A novel smooth saturation function is designed to address insufficient chattering suppression of traditional symbolic and linear saturation functions in sliding mode control. By analyzing the gain characteristics and convergence time characteristics of different saturation functions, the designed new smooth saturation function with continuous differentiability in the full definition domain and great switching gain is demonstrated to provide a faster overall convergence rate. Combined with a gain adaptive disturbance observer, the proposed new smooth saturation function can achieve rapid convergence and further chattering suppression of the control system. Simulation and experimental results show that the proposed control method has better current tracking characteristics and faster dynamic response than traditional PI control under small output current overshoot. It has outstanding disturbance rejection performance, current tracking performance, and strong robustness. As a result, accurate excitation of the coil inductance can be achieved to ensure vertical displacement closed-loop feedback control of the plasma, even considering load side disturbance.
黄海宏, 陈昭, 王海欣. 全超导托卡马克核聚变发电装置快控电源的干扰抑制离散积分滑模电流控制[J]. 电工技术学报, 2024, 39(10): 3141-3151.
Huang Haihong, Chen Zhao, Wang Haixin. Disturbance Suppression Discrete Integral Sliding Mode Current Control of Experimental Advanced Superconducting Tokamak Fast Control Power Supply. Transactions of China Electrotechnical Society, 2024, 39(10): 3141-3151.
[1] Ji Xin, Song Yangtian, Shen Ge, et al.Engineering design of EAST passive stabilization loop[J]. Journal of Fusion Energy, 2015, 34: 504-508. [2] 许水清, 黄文展, 何怡刚, 等. 基于自适应滑模观测器的中点钳位型三电平并网逆变器开路故障诊断[J]. 电工技术学报, 2023, 38(4): 1010-1022. Xu Shuiqing, Huang Wenzhan, He Yigang, et al.Open-circuit fault diagnosis method of neutral point clamped three-level grid-connected inverter based on adaptive sliding mode observer[J]. Transactions of China Electrotechnical Society, 2023, 38(4): 1010-1022. [3] 方馨, 王丽梅, 张康. 基于扰动观测器的永磁直线电机高阶非奇异快速终端滑模控制[J]. 电工技术学报, 2023, 38(2): 409-421. Fang Xin, Wang Limei, Zhang Kang.High order non- singular fast terminal sliding mode control of permanent magnet linear motor based on disturbance observer[J]. Transactions of China Electrotechnical Society, 2023, 38(2): 409-421. [4] 郭昕, 黄守道, 彭昱, 等. 基于改进型双幂次趋近律与全局快速终端滑模观测器的IPMSM调速系统滑模控制[J]. 电工技术学报, 2023, 38(1): 190-203. Guo Xin, Huang Shoudao, Peng Yu, et al.Sliding mode control of IPMSM speed regulation system based on an improved double power reaching law and global fast terminal sliding mode observer[J]. Transactions of China Electrotechnical Society, 2023, 38(1): 190-203. [5] 曹学谦, 葛琼璇, 朱进权, 等. 基于积分滑模的高速磁悬浮列车谐波电流抑制策略[J]. 电工技术学报, 2022, 37(22): 5817-5825. Cao Xueqian, Ge Qiongxuan, Zhu Jinquan, et al.Harmonic current suppression strategy for high-speed maglev train based on integral sliding mode[J]. Transactions of China Electrotechnical Society, 2022, 37(22): 5817-5825. [6] 杨朋威, 康祎龙, 苗世洪, 等. V/v牵引供电系统中铁路功率调节器的改进滑模控制策略[J]. 高电压技术, 2020, 46(6): 2218-2229. Yang Pengwei, Kang Yilong, Miao Shihong, et al.Improved sliding mode control strategy for railway static power conditioner in V/v traction power supply system[J]. High Voltage Engineering, 2020, 46(6): 2218-2229. [7] Zheng Changming, Tomislav D, Zhang Jiasheng, et al.Composite robust quasi-sliding mode control of DC-DC Buck converter with constant power loads[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(2): 1455-1464. [8] 方馨, 王丽梅, 张康. H型平台直驱伺服系统离散积分滑模平滑控制[J]. 电机与控制学报, 2022, 26(6): 101-111. Fang Xin, Wang Limei, Zhang Kang.Discrete integral sliding mode smoothing control of H-type platform direct drive servo system[J]. Electric Machines and Control, 2022, 26(6): 101-111. [9] Wang Zuo, Li Shihua, Li Qi.Discrete-time fast terminal sliding mode control design for DC-DC Buck converters with mismatched disturbances[J]. IEEE Transactions on Industrial Informatics, 2020, 16(2): 1204-1213. [10] 侯世玺, 储云迪, 陈晨. 基于模糊神经网络的有源电力滤波器全局滑模控制[J]. 控制与决策, 2020, 35(10): 2330-2335. Hou Shixi, Chu Yundi, Chen Chen.Fuzzy neural network based global sliding mode control for active power filter[J]. Control and Decision, 2020, 35(10): 2330-2335. [11] 雷城, 蓝益鹏, 徐泽来, 等. 一种新型复合滑模趋近律设计与分析[J]. 控制与决策, 2023, 38(2): 435-440. Lei Cheng, Lan Yipeng, Xu Zelai, et al.Design and analysis of a new compound sliding mode reaching law[J]. Control and Decision, 2023, 38(2): 435-440. [12] 赵书强, 邵冰冰, 高本锋, 等. 基于组合趋近律的VSC-HVDC滑模电流控制设计和稳定性分析[J]. 高电压技术, 2019, 45(11): 3603-3611. Zhao Shuqiang, Shao Bingbing, Gao Benfeng, et al.Sliding mode current control design and stability analysis of VSC-HVDC based on combinatorial reaching law[J]. High Voltage Engineering, 2019, 45(11): 3603-3611. [13] 谷志锋, 孙晓云, 葛孟超, 等. 直接转矩Super- Twisting滑模异步发电控制[J]. 高电压技术, 2020, 46(8): 2760-2768. Gu Zhifeng, Sun Xiaoyun, Ge Mengchao, et al.Super-twisting sliding-mode direct-torque control for asynchronous generation[J]. High Voltage Engineering, 2020, 46(8): 2760-2768. [14] 谭超, 韩国鹏, 戴朝华, 等. 基于改进滑模控制的PEMFC热管理控制方法[J]. 中国电机工程学报, 2022, 42(16): 5899-5909. Tan Chao, Han Guopeng, Dai Chaohua, et al.Thermal management control method of PEMFC based on improved sliding mode control[J]. Proceedings of the CSEE, 2022, 42(16): 5899-5909. [15] 付东学, 赵希梅. 基于径向基函数神经网络的永磁直线同步电机反推终端滑模控制[J]. 电工技术学报, 2020, 35(12): 2545-2553. Fu Dongxue, Zhao Ximei.Backstepping terminal sliding mode control based on radial basis function neural network for permanent magnet linear syn- chronous motor[J]. Transactions of China Electro- technical Society, 2020, 35(12): 2545-2553. [16] Xu Bo, Zhang Lei, Ji Wei.Improved non-singular fast terminal sliding mode control with disturbance observer for PMSM drives[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4): 2753-2762. [17] 孙恺英, 李冬辉, 姚乐乐, 等. 基于新型超螺旋滑模自适应观测器的永磁同步电机转速估计策略[J].高电压技术, 2020, 46(11): 3771-3781. Sun Kaiying, Li Donghui, Yao Lele, et al.Speed estimation algorithm for permanent magnet syn- chronous motor based on novel super-twisting adaptive observer[J]. High Voltage Engineering, 2020, 46(11): 3771-3781. [18] Jesus L F, Jose A J, Arturo H M, et al.Sliding mode control based on linear extended state observer for DC-to-DC Buck-Boost power converter system with mismatched disturbances[J]. IEEE Transactions on Industry Applications, 2022, 58(1): 2753-2762. [19] 靳东松, 刘凌. 永磁同步电机的改进无差拍预测抗扰前馈控制[J]. 西安交通大学学报, 2022, 56(7): 38-46. Jin Dongsong, Liu Ling.Improved control strategy combining deadbeat predictive current control with disturbance rejection feedforward compensation for permanent magnet synchronous motor[J]. Journal of Xi’an Jiaotong University, 2022, 56(7): 38-46. [20] 梅三冠, 卢闻州, 樊启高, 等. 基于滑模观测器误差补偿的永磁同步电机无位置传感器控制策略[J].电工技术学报, 2023, 38(2): 398-408. Mei Sanguan, Lu Wenzhou, Fan Qigao, et al.Sensorless control strategy of permanent magnet synchronous motor based on error compensation estimated by sliding mode observer[J]. Transactions of China Electrotechnical Society, 2023, 38(2): 398-408. [21] Liu Jianxing, Shen Xiaoning, Abraham M A, et al.Sliding mode control of grid connected neutral- point-clamped converters via high-gain observer[J]. IEEE Transactions on Industrial Electronics, 2022, 69(4): 4010-4021. [22] 王天鹤, 赵希梅, 金鸿雁. 基于递归径向基神经网络的永磁直线同步电机智能二阶滑模控制[J]. 电工技术学报, 2021, 36(6): 1229-1237. Wang Tianhe, Zhao Ximei, Jin Hongyan.Intelligent second-order sliding mode control based on recurrent radial basis function neural network for permanent magnet linear synchronous motor[J]. Transactions of China Electrotechnical Society, 2021, 36(6): 1229-1237. [23] 禹聪, 康尔良. 永磁同步电机模糊滑模速度控制器设计[J]. 电机与控制学报, 2022, 26(7): 98-104. Yu Cong, Kang Erliang.Design of fuzzy sliding mode speed controller for permanent magnet synchronous motor[J]. Electric Machines and Control, 2022, 26(7): 98-104. [24] 魏惠芳, 王丽梅. 永磁直线同步电机自适应模糊神经网络时变滑模控制[J]. 电工技术学报, 2022, 37(4): 861-869. Wei Huifang, Wang Limei.Adaptive fuzzy neural network time-varying sliding mode control for per- manent magnet linear synchronous motor[J]. Transa- ctions of China Electrotechnical Society, 2022, 26(7): 861-869.