A Live Detection Technology of Distribution Network Cable Insulation Deterioration State Based on Harmonic Components
Xu Haisong1, Zhang Daning1, Hu Ran2, Lu Xu2, Wang Anzhe3, Wang Yuli3, Zhang Guanjun1
1. School of Electrical Engineering Xi′an Jiaotong University Xi′an 710049 China; 2. Shenzhen Power Supply Bureau Co. Ltd Shenzhen 518000 China; 3. China Electric Power Research Institute Co. Ltd Wuhan 430000 China
Abstract:Due to restrictions imposed by power outages for maintenance on the urban power grid, the on-line detection technology of harmonic currents in distribution network cables is expected to become an effective supplement to traditional offline diagnostic methods, aiming to enhance the real-time diagnosis of the insulation status of distribution network cables. In this study, COMSOL finite element software was used to simulate the pores and water tree defects in the XLPE insulation layer of cables. The distribution of magnetic field strength in XLPE cables under different defect conditions was compared and analyzed. A real experimental platform for 10 kV distribution network cables was established, and typical defective cables with moisture and long-term thermal aging were prepared. The induced currents of aging defects and water tree defects in the XLPE cable insulation layer were collected in experiments, and the 2nd to 11th harmonic currents under different insulation defects were extracted. The influence patterns of pore depth caused by aging and external moisture intrusion on induced currents were obtained. To effectively assess the degree of cable degradation, a cable degradation assessment method based on the harmonic features of induced currents was constructed using LASSO regression. In the prediction analysis of normal thermally aged cables, the root mean square error of LASSO regression was 17.1 days, accounting for 14% of the actual aging time range, indicating high accuracy. The prediction of aging time for moisture-affected cables was longer, consistent with the actual state of accelerated insulation aging due to moisture. To accurately identify the type of insulation layer defects in cables, a defect identification method combining principal component analysis and clustering algorithm was developed based on the data sample set. When using harmonic data of a 300 A test current for clustering identification of moisture-affected and normal aging cables, the accuracy reached 75.64%, effectively distinguishing between moisture-affected cables and normal cables. The cable insulation live diagnosis technology proposed in this study, based on the harmonic current characteristics, integrates cable insulation degradation status, induced harmonic current features, and clustering analysis algorithms, achieving intelligent identification of cable insulation defects.
徐海松, 张大宁, 胡冉, 卢旭, 王安哲, 王昱力, 张冠军. 基于谐波分量的配电电缆绝缘劣化状态带电检测技术[J]. 电工技术学报, 2024, 39(7): 2161-2173.
Xu Haisong, Zhang Daning, Hu Ran, Lu Xu, Wang Anzhe, Wang Yuli, Zhang Guanjun. A Live Detection Technology of Distribution Network Cable Insulation Deterioration State Based on Harmonic Components. Transactions of China Electrotechnical Society, 2024, 39(7): 2161-2173.
[1] 沈谢林, 王利, 郭建钊, 等. 10 kV配电电缆绝缘耐压与局部放电一体化测试方法研究[J]. 高压电器, 2023, 59(2): 120-126. Shen Xielin, Wang Li, Guo Jianzhao, et al.Research on integrated method for withstanding voltage and partial discharge test of 10 kV power cable insulation[J]. High Voltage Electrical Apparatus, 2023, 59(2): 120-126. [2] Hamad A A, Ghunem R A.A techno-economic framework for replacing aged XLPE cables in the distribution network[J]. IEEE Transactions on Power Delivery, 2020, 35(5): 2387-2393. [3] 刘刚, 刘斯亮, 金尚儿, 等. 基于理、化、电特性的110 kV XLPE绝缘电缆剩余寿命的综合评估[J]. 电工技术学报, 2016, 31(12): 72-79. Liu Gang, Liu Siliang, Jin Shanger, et al.Comprehensive evaluation of remaining life of 110 kV XLPE insulated cable based on physical, chemical and electrical properties[J]. Transactions of China Electrotechnical Society, 2016, 31(12): 72-79. [4] 李旭, 郗晓光, 朱明正, 等. 两起不同工艺35 kV电缆中间接头振荡波局部放电缺陷对比分析[J]. 高压电器, 2018, 54(11): 260-264, 272. Li Xu, Xi Xiaoguang, Zhu Mingzheng, et al.Comparative analysis of oscillating wave induced partial discharge defects in two 35 kV cable joints with different processes[J]. High Voltage Apparatus, 2018, 54(11): 260-264, 272. [5] 单秉亮, 李舒宁, 杨霄, 等. XLPE配电电缆缺陷诊断与定位技术面临的关键问题[J]. 电工技术学报, 2021, 36(22): 4809-4819. Shan Bingliang, Li Shuning, Yang Xiao, et al.Key problems faced by defect diagnosis and location technologies for XLPE distribution cables[J]. Transactions of China Electrotechnical Society, 2021, 36(22): 4809-4819. [6] 王晓卫, 王雪, 王毅钊, 等. 基于图像信息熵与多元变分模态分解的电缆局部放电信号去噪方法[J/OL]. 电工技术学报, 2023: 1-17[2024-01-09]. https://doi.org/10.19595/j.cnki.1000-6753.tces.230638. Wang Xiaowei, Wang Xue, Wang Yizhao, et al. A denoising algorithm for cable partial discharge signals based on image information entropy and multivariate variational mode decomposition[J/OL]. Transactions of China Electrotechnical Society, 2023: 1-17[2024-01-09]. https://doi.org/10.19595/j.cnki.1000-6753.tces.230638. [7] 周莎莎, 王航, 杨斌, 等. 地下交叉互联高压电缆分布式护层电流传感系统的时滞控制方法[J]. 电工技术学报, 2024, 39(4): 1234-1244. Zhou Shasha, Wang Hang, Yang Bin, et al.Time delay control method for distributed sheath current sensing system of underground cross-bonding high voltage cable[J]. Transactions of China Electrotechnical Society, 2024, 39(4): 1234-1244. [8] Hu Xiao, Siew W H, Judd M D, et al.Modeling of high-frequency current transformer based partial discharge detection in high-voltage cables[J]. IEEE Transactions on Power Delivery, 2019, 34(4): 1549-1556. [9] 程序, 陶诗洋, 王文山. 一起110kV XLPE电缆终端局部放电带电检测及解体分析实例[J]. 中国电机工程学报, 2013, 33(增刊1): 226-230. Cheng Xu, Tao Shiyang, Wang Wenshan.The partial discharge detection and location as well as dissection of 110 kV XLPE cable terminal[J]. Proceedings of the CSEE, 2013, 33(S1): 226-230. [10] 周凯, 赵庆杰, 吴科, 等. 牵引机车中的高频谐波对电缆终端热点的影响[J]. 高电压技术, 2016, 42(11): 3601-3606. Zhou Kai, Zhao Qingjie, Wu Ke, et al.Effect of high frequency harmonics in traction locomotives on hot-spot of cable terminations[J]. High Voltage Engineering, 2016, 42(11): 3601-3606. [11] Chen Jie, Li Hongze, Zhou Li, et al.Diagnosis of water tree aging in XLPE cable by the loss current harmonic component under variable frequency power[J]. Journal of Electrical and Electronic Engineering, 2015, 3(6): 208-214. [12] Liu Yong, Wang Hao, Zhang Han, et al.Thermal aging evaluation of XLPE power cable by using multi-dimensional characteristic analysis of leakage current[J]. Polymers, 2022, 14(15): 3147. [13] Nakamura S, Ozaki T, Ito O, et al.Dynamic behavior of interconnected channels in water-treed polyethylene subjected to high voltage[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2002, 9(3): 390-395. [14] Zhou Tao, Zhu Xiaozhong, Yang Haifei, et al.Identification of XLPE cable insulation defects based on deep learning[J]. Global Energy Interconnection, 2023, 6(1): 36-49. [15] 郭瑞宙, 王天正, 杨罡, 等. 电缆绝缘缺陷与电流谐波成分特性关系分析[J]. 绝缘材料, 2020, 53(2): 102-108. Guo Ruizhou, Wang Tianzheng, Yang Gang, et al.Analysis on relation between cable insulation defects and current harmonic component characteristics[J]. Insulating Materials, 2020, 53(2): 102-108. [16] Jones J P, Llewellyn J P, Lewis T J.The contribution of field-induced morphological change to the electrical aging and breakdown of polyethylene[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(5): 951-966. [17] Zhang Kai, Zhong Lisheng, Gao Jinghui, et al.Temperature dependence of crystalline structure and DC performance in LLDPE/HDPE blending material[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(3): 754-759. [18] 王昊月, 李成榕, 王伟, 等. 高压频域介电谱诊断XLPE电缆局部绝缘老化缺陷的研究[J]. 电工技术学报, 2022, 37(6): 1542-1553. Wang Haoyue, Li Chengrong, Wang Wei, et al.Local aging diagnosis of XLPE cables using high voltage frequency domain dielectric spectroscopy[J]. Transactions of China Electrotechnical Society, 2022, 37(6): 1542-1553. [19] Stratton J A.Electromagnetic Theory[M]. New York: McGraw-Hill Book Company, Inc., 1941. [20] Anh T, Berquez L, Boudou L, et al.Effect of trapped space charge on mechanical deformation induced by electric field[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(5): 1416-1422. [21] 董芸滋, 高嫄, 李秀峰, 等. 交联度对交联聚乙烯/有机化蒙脱土纳米复合材料拉伸性能和介电性能的影响[J]. 电工技术学报, 2023, 38(5): 1154-1165. Dong Yunzi, Gao Yuan, Li Xiufeng, et al.Effect of crosslinking degree on tensile and dielectric properties of cross-linked polyethylene/organic montmorillonite nanocomposite material[J]. Transactions of China Electrotechnical Society, 2023, 38(5): 1154-1165. [22] 苗旺, 陈平, 任志刚, 等. 电流谐波法在电力电缆状态检测诊断的应用进展[J]. 电力系统及其自动化学报, 2021, 33(3): 73-80. Miao Wang, Chen Ping, Ren Zhigang, et al.Research process in applications of current harmonic analysis to condition monitoring and diagnosis of power cable[J]. Proceedings of the CSU-EPSA, 2021, 33(3): 73-80. [23] Jiang Jun, Chen Ruyi, Zhang Chaohai, et al.Dynamic fault prediction of power transformers based on lasso regression and change point detection by dissolved gas analysis[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(6): 2130-2137. [24] 徐明杰, 赵健, 王小宇, 等. 基于多任务联合模型的居民用电模式分类方法[J]. 电工技术学报, 2022, 37(21): 5490-5502. Xu Mingjie, Zhao Jian, Wang Xiaoyu, et al.Residential electricity consumption pattern classification method based on multi-task joint model[J]. Transactions of China Electrotechnical Society, 2022, 37(21): 5490-5502. [25] 姜雅男, 于永进, 李长云. 基于改进TOPSIS模型的绝缘纸机-热老化状态评估方法[J]. 电工技术学报, 2022, 37(6): 1572-1582. Jiang Yanan, Yu Yongjin, Li Changyun.Evaluation method of insulation paper deterioration status with mechanical-thermal synergy based on improved TOPSIS model[J]. Transactions of China Electro-technical Society, 2022, 37(6): 1572-1582. [26] 陈曦, 骆高超, 曹杰, 等. 基于改进K-近邻算法的XLPE电缆气隙放电发展阶段识别[J]. 电工技术学报, 2020, 35(23): 5015-5024. Chen Xi, Luo Gaochao, Cao Jie, et al.Development stage identification of XLPE cable air-gap discharge based on improved K-nearest neighbor algorithm[J]. Transactions of China Electrotechnical Society, 2020, 35(23): 5015-5024.