Analyzing Influence of Barrel Shell on Launching Performance of Electromagnetic Rail Launcher
Zhai Xiaofei1, Zou Kun1,2, Li Peifei1, Liu Hua1, Peng Zhiran1
1. National Key Laboratory of Science and Technology on Vessel Integrated Power System Naval University of Engineering Wuhan 430033 China; 2. School of Electrical Engineering Southeast University Nanjing 210096 China
Abstract:As part of the electromagnetic launcher (EML), the barrel shell mainly provides preloading force for the rails to constrain the EML's expansion and deformation while providing support stiffness for the rail to ensure the straightness of the EML. During the launch process of the armature, the instantaneous change of rail current induces a considerable eddy current on the metal barrel shell of the EML, and the eddy current magnetic field of the shell weakens the magnetic field inside the device. It also affects the current distribution of the rails, thereby affecting the electrical and mechanical properties of the EML and the launching performance, such as the exit speed of the armature. It is necessary to analyze the influence of the shell material and structure on the electromagnetic parameters of the EML and the force of the armature and rails. Firstly, the magnetic field control equation considering the eddy current of the shell is derived. The finite element model (FEM) of the integral, upper-lower separated, and laminated shell structures is established. After the speed frequency is introduced, the frequency-changed current excitation simulates the velocity skin effect caused by the launching of the armature in the bore. Therefore, the inductance gradient and shell loss with frequency change curve, the electric density distribution of the rails, and the eddy current distribution cloud in the shell can be obtained. Secondly, the simulation of electromagnetic-structural is carried out, and the stress distribution of each component of the EML is obtained. The system electrical simulation is established, and the launching simulation results of the three shell structures are compared. It is shown that the laminated structure shell has the smallest eddy current, the largest inductance gradient and device component stress, and the highest armature exit speed. The integral structure shell has the largest eddy current and shell loss, the smallest inductance gradient and device component stress, and the lowest armature exit speed. Finally, the simulation and test results of the laminated structure shell EML are compared, and the errors of the armature exit speed and the current peak are less than 1%. The material selection with high permeability and low conductivity and the shell structure design for suppressing eddy currents are conducive to improving the exit speed and system efficiency of the EML. In addition, reducing the eddy current of the shell can increase the electromagnetic thrust of the armature. However, the external expansion force of the rails will be increased, and increasing the structural strength of the shell is required to provide a higher preloading force. Therefore, the shell's structural design and material selection should consider electromagnetic and mechanical properties for excellent launching performance.
翟小飞, 邹锟, 李配飞, 刘华, 彭之然. 身管外壳对电磁轨道发射装置发射性能影响分析[J]. 电工技术学报, 2024, 39(2): 333-342.
Zhai Xiaofei, Zou Kun, Li Peifei, Liu Hua, Peng Zhiran. Analyzing Influence of Barrel Shell on Launching Performance of Electromagnetic Rail Launcher. Transactions of China Electrotechnical Society, 2024, 39(2): 333-342.
[1] 马伟明, 鲁军勇, 李湘平. 电磁发射超高速一体化弹丸[J]. 国防科技大学学报, 2019, 41(4): 1-10. Ma Weiming, Lu Junyong, Li Xiangping.Electro-magnetic launch hypervelocity integrated projectile[J]. Journal of National University of Defense Technology, 2019, 41(4): 1-10. [2] 王莹, 肖峰. 电炮原理[M]. 北京: 国防工业出版社, 1995. [3] 马伟明. 关于电工学科前沿技术发展的若干思考[J]. 电工技术学报, 2021, 36(22): 4627-4636. Ma Weiming.Some thoughts on the development of cutting-edge technology in electrotechnics[J]. Transa-ctions of China Electrotechnical Society, 2021, 36(22): 4627-4636. [4] Ma Weiming, Lu Junyong.Thinking and study of electromagnetic launch technology[J]. IEEE Transa-ctions on Plasma Science, 2017, 45(7): 1071-1077. [5] 彭之然, 刘华, 汪光森, 等. 基于多模块分时放电半解析模型的脉冲电源触发策略[J]. 电工技术学报, 2021, 36(增刊1): 54-61. Peng Zhiran, Liu Hua, Wang Guangsen, et al.Trigger strategy of pulse power supply based on semi-analytical model of multi-module time-sharing discharge[J]. Transactions of China Electrotechnical Society, 2021, 36(S1): 54-61. [6] Landen D, Satapathy S.Eddy current effects in the laminated containment structure of railguns[J]. IEEE Transactions on Magnetics, 2007, 43(1): 150-156. [7] 林庆华, 栗保明. 有限元/边界元耦合法计算电磁轨道炮三维瞬态涡流场[J]. 南京理工大学学报, 2010, 34(2): 217-221. Lin Qinghua, Li Baoming.Finite-element/boundary-element coupling method for 3D transient eddy current field calculation in electromagnetic railgun[J]. Journal of Nanjing University of Science and Tech-nology, 2010, 34(2): 217-221. [8] 刘守豹, 阮江军, 黄道春, 等. 封装对轨道炮电感梯度的影响[J]. 电工电能新技术, 2009, 28(4): 42-45, 75. Liu Shoubao, Ruan Jiangjun, Huang Daochun, et al.Influence of shielding on rail Gun induction gradi-ent[J]. Advanced Technology of Electrical Engin-eering and Energy, 2009, 28(4): 42-45, 75. [9] 楼宇涛, 栗保明. 管身对中口径电磁轨道炮的影响分析[J]. 强激光与粒子束, 2015, 27(9): 198-203. Lou Yutao, Li Baoming.Influence of containment for medium caliber electromagnetic railgun[J]. High Power Laser and Particle Beams, 2015, 27(9): 198-203. [10] 楼宇涛, 栗保明. 电磁轨道炮封装中涡流损耗的抑制方法[J]. 高电压技术, 2016, 42(6): 1935-1941. Lou Yutao, Li Baoming.Methods for reducing the loss caused by the eddy current in electromagnetic railgun shielding[J]. High Voltage Engineering, 2016, 42(6): 1935-1941. [11] 彭之然, 汪光森, 翟小飞, 等. 电磁轨道发射装置时变电感梯度建模与分析[J]. 电工技术学报, 2020, 35(23): 4843-4851. Peng Zhiran, Wang Guangsen, Zhai Xiaofei, et al.Modeling and analysis of time-varying inductance gradient for electromagnetic rail launcher[J]. Transa-ctions of China Electrotechnical Society, 2020, 35(23): 4843-4851. [12] 李湘平, 鲁军勇, 张晓, 等. 电磁发射弹丸膛口磁场分布特性分析[J]. 电工技术学报, 2021, 36(3): 525-531. Li Xiangping, Lu Junyong, Zhang Xiao, et al.Analysis of distribution characteristics of electro-magnetic launcher projectile muzzle magnetic field[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 525-531. [13] 林庆华, 栗保明. 基于瞬态多物理场求解器的电磁轨道炮发射过程建模与仿真[J]. 兵工学报, 2020, 41(9): 1697-1707. Lin Qinghua, Li Baoming.Modeling and simulation of electromagnetic railgun launching process based on a transient multi-physical field solver[J]. Acta Armamentarii, 2020, 41(9): 1697-1707. [14] Peng Zhiran, Zhang Xiao, Zhai Xiaofei, et al.Field-circuit coupled analysis of an electromagnetic launcher sliding contact[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2022, 17(8): 1198-1208. [15] 李白, 鲁军勇, 谭赛, 等. 高速滑动电接触电枢表面动态磨损过程研究[J]. 电工技术学报, 2023, 38(1): 131-139. Li Bai, Lu Junyong, Tan Sai, et al.Study on dynamic wear process of armature surface in high-speed sliding electrical contact[J]. Transactions of China Electrotechnical Society, 2023, 38(1): 131-139. [16] 翟小飞, 李鑫航, 刘华, 等. 电磁轨道发射装置动态电感梯度分析[J]. 国防科技大学学报, 2022, 44(3): 156-163. Zhai Xiaofei, Li Xinhang, Liu Hua, et al.Analysis of dynamic inductance gradient of electromagnetic rail launcher[J]. Journal of National University of Defense Technology, 2022, 44(3): 156-163. [17] Lü Qingao, Xiang Hongjun, Lei Bin, et al.Physical principle and relevant restraining methods about velocity skin effect[J]. IEEE Transactions on Plasma Science, 2015, 43(5): 1523-1530. [18] Tosun N, Ceylan D, Polat H, et al.A comparison of velocity skin effect modeling with 2-D transient and 3-D quasi-transient finite element methods[J]. IEEE Transactions on Plasma Science, 2021, 49(4): 1500-1507. [19] 张嘉炜, 鲁军勇, 谭赛, 等. 考虑初始接触压力的滑动电接触界面磁扩散模型[J]. 电工技术学报, 2022, 37(2): 488-495. Zhang Jiawei, Lu Junyong, Tan Sai, et al.A magnetic diffusion model of electromagnetic launcher con-sidering initial contact pressure[J]. Transactions of China Electrotechnical Society, 2022, 37(2): 488-495. [20] Zhai Xiaofei, Liu Hua, Peng Zhiran.Research on armature thrust inductance gradient of the elec-tromagnetic rail launcher[J]. IEEE Transactions on Plasma Science, 2022, 50(3): 754-760.