[1] 李文沅. 电力系统安全经济运行: 模型与方法[M]. 重庆: 重庆大学出版社, 1989.
[2] Quarm E, Madani R.Scalable security-constrained unit commitment under uncertainty via cone programming relaxation[J]. IEEE Transactions on Power Systems, 2021, 36(5): 4733-4744.
[3] Chen Yonghong, Pan Feng, Holzer J, et al.A high performance computing based market economics driven neighborhood search and polishing algorithm for security constrained unit commitment[J]. IEEE Transactions on Power Systems, 2021, 36(1): 292-302.
[4] Cain M, O’Neill R, Castillo A. History of Optimal Power Flow and Formulations[J]. Federal Energy Regulatory Commission, 2012, 1: 1-36.
[5] Mittelmann H. Decison Tree for Optimization Software[EB/OL]. [2023-04-13]. http://plato.asu.edu/bench.html.
[6] 吴熙, 陆瑶, 蔡晖, 等. 计及风电不确定性的含线间潮流控制器的电力系统经济调度[J]. 电工技术学报, 2023, 38(3): 781-792.
Wu Xi, Lu Yao, Cai Hui, et al.Economic dispatching of power system with interline power flow controller considering wind power uncertainty[J]. Transactions of China Electrotechnical Society, 2023, 38(3): 781-792.
[7] 徐玉琴, 方楠. 基于分段线性化与改进二阶锥松弛的电-气互联系统多目标优化调度[J]. 电工技术学报, 2022, 37(11): 2800-2812.
Xu Yuqin, Fang Nan.Multi objective optimal scheduling of integrated electricity-gas system based on piecewise linearization and improved second order cone relaxation[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2800-2812.
[8] 吴孟雪, 房方. 计及风光不确定性的电-热-氢综合能源系统分布鲁棒优化[J]. 电工技术学报, 2023, 38(13): 3473-3485.
Wu Mengxue, Fang Fang.Distributionally robust optimization of electricity-heat-hydrogen integrated energy system with wind and solar uncertainties[J]. Transactions of China Electrotechnical Society, 2023, 38(13): 3473-3485.
[9] 周博, 艾小猛, 方家琨, 等. 计及超分辨率风电出力不确定性的连续时间鲁棒机组组合[J]. 电工技术学报, 2021, 36(7): 1456-1467.
Zhou Bo, Ai Xiaomeng, Fang Jiakun, et al.Continuous-time modeling based robust unit commitment considering beyond-the-resolution wind power uncertainty[J]. Transactions of China Electrotechnical Society, 2021, 36(7): 1456-1467.
[10] 顾雪平, 白岩松, 李少岩, 等. 考虑风电不确定性的电力系统恢复全过程两阶段鲁棒优化方法[J]. 电工技术学报, 2022, 37(21): 5462-5477.
Gu Xueping, Bai Yansong, Li Shaoyan, et al.Two stage robust optimization method for the whole-process power system restoration considering wind power uncertainty[J]. Transactions of China Electrotechnical Society, 2022, 37(21): 5462-5477.
[11] 高晨, 赵勇, 汪德良, 等. 海上风电机组电气设备状态检修技术研究现状与展望[J]. 电工技术学报, 2022, 37(增刊1): 30-42.
Gao Chen, Zhao Yong, Wang Deliang, et al.Research status and prospect of condition based maintenance technology for offshore wind turbine electrical equipment[J]. Transactions of China Electrotechnical Society, 2022, 37(S1): 30-42.
[12] 杨知方, 钟海旺, 夏清, 等. 输电网结构优化问题研究综述和展望[J]. 中国电机工程学报, 2016, 36(2): 426-434.
Yang Zhifang, Zhong Haiwang, Xia Qing, et al.Review and prospect of transmission topology optimization[J]. Proceedings of the CSEE, 2016, 36(2): 426-434.
[13] 赵伟, 熊正勇, 潘艳, 等. 计及碳排放流的电力系统低碳规划[J]. 电力系统自动化, 2023, 47(9): 23-33.
Zhao Wei, Xiong Zhengyong, Pan Yan, et al.Low-carbon planning of power system considering carbon emission flow[J]. Automation of Electric Power Systems, 2023, 47(9): 23-33.
[14] Meus J, Poncelet K, Delarue E.Applicability of a clustered unit commitment model in power system modeling[J]. IEEE Transactions on Power Systems, 2018, 33(2): 2195-2204.
[15] Du Ershun, Zhang Ning, Kang Chongqing, et al.A high-efficiency network-constrained clustered unit commitment model for power system planning studies[J]. IEEE Transactions on Power Systems, 2019, 34(4): 2498-2508.
[16] Yin Yue, He Chuan, Liu Tianqi, et al.Risk-averse stochastic midterm scheduling of thermal-hydro-wind system: a network-constrained clustered unit commitment approach[J]. IEEE Transactions on Sustainable Energy, 2022, 13(3): 1293-1304.
[17] Pineda S, Fernández-Blanco R, Morales J M.Time-adaptive unit commitment[J]. IEEE Transactions on Power Systems, 2019, 34(5): 3869-3878.
[18] Zhang Menghan, Yang Zhifang, Lin Wei, et al.Enhancing economics of power systems through fast unit commitment with high time resolution[J]. Applied Energy, 2021, 281: 116051.
[19] 汪洋, 夏清, 康重庆. 机组组合算法中起作用整数变量的辨识方法[J]. 中国电机工程学报, 2010, 30(13): 46-52.
Wang Yang, Xia Qing, Kang Chongqing.Identification of the active integer variables in security constrained unit commitment[J]. Proceedings of the CESS, 2010, 30(13): 46-52.
[20] Xavier Álinson S, Feng Qiu, Shabbir A.Learning to solve large-scale security-constrained unit commitment problems[J]. INFORMS Journal on Computing, 2020, 33(2): 739-756.
[21] Ardakani A J, Bouffard F.Identification of umbrella constraints in DC-based security-constrained optimal power flow[J]. IEEE Transactions on Power Systems, 2013, 28(4): 3924-3934.
[22] Ardakani A J, Bouffard F.Acceleration of umbrella constraint discovery in generation scheduling problems[J]. IEEE Transactions on Power Systems, 2015, 30(4): 2100-2109.
[23] Thompson G L, Tonge F M, Zionts S.Techniques for removing nonbinding constraints and extraneous variables from linear programming problems[J]. Management Science, 1966, 12(7): 588-608.
[24] Yang Yafei, Guan Xiaohong, Zhai Qiaozhu.Fast grid security assessment with N - k contingencies[J]. IEEE Transactions on Power Systems, 2017, 32(3): 2193-2203.
[25] 袁泉, 孙宇军, 张蔷, 等. 考虑安全约束耦合辨识的日前发电计划求解[J]. 电力系统自动化, 2022, 46(21): 143-151.
Yuan Quan, Sun Yujun, Zhang Qiang, et al.Day-ahead generation schedule solving considering identification of security constraint coupling[J]. Automation of Electric Power Systems, 2022, 46(21): 143-151.
[26] Brearley A L, Mitra G, Williams H P.Analysis of mathematical programming problems prior to applying the simplex algorithm[J]. Mathematical Programming, 1975, 8(1): 54-83.
[27] Capitanescu F, Glavic M, Ernst D, et al.Contingency filtering techniques for preventive security-constrained optimal power flow[J]. IEEE Transactions on Power Systems, 2007, 22(4): 1690-1697.
[28] Capitanescu F, Wehenkel L.A new iterative approach to the corrective security-constrained optimal power flow problem[J]. IEEE Transactions on Power Systems, 2008, 23(4): 1533-1541.
[29] Santos Xavier Á, Qiu Feng, Wang Fengyu, et al.Transmission constraint filtering in large-scale security-constrained unit commitment[J]. IEEE Transactions on Power Systems, 2019, 34(3): 2457-2460.
[30] Pineda S, Morales J M, Jiménez-Cordero A.Data-driven screening of network constraints for unit commitment[J]. IEEE Transactions on Power Systems, 2020, 35(5): 3695-3705.
[31] Zhang Shubo, Ye Hongxing, Wang Fengyu, et al.Data-aided offline and online screening for security constraint[J]. IEEE Transactions on Power Systems, 2021, 36(3): 2614-2622.
[32] Mohammadi F, Sahraei-Ardakani M, Trakas D N, et al.Machine learning assisted stochastic unit commitment during hurricanes with predictable line outages[J]. IEEE Transactions on Power Systems, 2021, 36(6): 5131-5142.
[33] Holzer J T, Chen Yonghong, Wu Zhongyu, et al. Fast simultaneous feasibility test for security constrained unit commitment[J]. IEEE Transactions on Power Systems, 2023, PP(99): 1-10.
[34] Tejada-Arango D A, Lumbreras S, Sánchez-Martín P, et al. Which unit-commitment formulation is best? A comparison framework[J]. IEEE Transactions on Power Systems, 2020, 35(4): 2926-2936.
[35] Knueven B, Ostrowski J, Watson J.On mixed-integer programming formulations for the unit commitment problem[J]. Informs Journal on Computing, 2020, 32(4): 857-876.
[36] Ma Ziming, Zhong Haiwang, Xia Qing, et al.A unit commitment algorithm with relaxation-based neighborhood search and improved relaxation inducement[J]. IEEE Transactions on Power Systems, 2020, 35(5): 3800-3809.
[37] Yu Yanan, Guan Yongpei, Chen Yonghong.An extended integral unit commitment formulation and an iterative algorithm for convex hull pricing[J]. IEEE Transactions on Power Systems, 2020, 35(6): 4335-4346.
[38] Schiro D A, Zheng Tongxin, Zhao Feng, et al.Convex hull pricing in electricity markets: formulation, analysis, and implementation challenges[J]. IEEE Transactions on Power Systems, 2016, 31(5): 4068-4075.
[39] Álvarez C, Mancilla-David F, Escalona P, et al.A bienstock-zuckerberg-based algorithm for solving a network-flow formulation of the convex hull pricing problem[J]. IEEE Transactions on Power Systems, 2020, 35(3): 2108-2119.
[40] Yan Bing, Luh P B, Zheng Tongxin, et al.A systematic formulation tightening approach for unit commitment problems[J]. IEEE Transactions on Power Systems, 2020, 35(1): 782-794.
[41] Achterberg T, Bixby R E, Gu Zonghao, et al.Presolve reductions in mixed integer programming[J]. INFORMS Journal on Computing, 2020, 32(2): 473-506.
[42] CPLEX. What are cuts?- IBM Documentation[EB/OL]. [2023-04-13]. https://www.ibm.com/docs/en/icos/22.1.0?topic=cuts-what-are.
[43] Yang Yu, Boland N, Dilkina B, et al.Learning generalized strong branching for set covering, set packing, and 0-1 knapsack problems[J]. European Journal of Operational Research, 2022, 301(3): 828-840.
[44] Lodi A, Zarpellon G.On learning and branching: a survey[J]. TOP, 2017, 25(2): 207-236.
[45] Khalil E B, Le Bodic P, Song Le, et al.Learning to branch in mixed integer programming[C]//Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, Arizona, 2016: 724-731.
[46] Gasse M, Chételat D, Ferroni N, et al. Exact combinatorial optimization with graph convolutional neural networks[EB/OL].2019: arXiv: 1906.01629. https://arxiv.org/abs/1906.01629.pdf
[47] Nair V, Bartunov S, Gimeno F, et al.Solving Mixed Integer Programs Using Neural Networks[M]. arXiv, 2021.
[48] Gu Xiaoyi, Dey S, Xavier A, et al.Exploiting Instance and Variable Similarity to Improve Learning-Enhanced Branching[M]. arXiv, 2022.
[49] Sabharwal A, Samulowitz H, Reddy C.Guiding combinatorial optimization with UCT[C]//Beldiceanu N, Jussien N, Pinson É. International Conference on Integration of Artificial Intelligence (AI) and Operations Research (OR) Techniques in Constraint Programming. Berlin, Heidelberg: Springer, 2012: 356-361.
[50] Berthold T, Lodi A, Salvagnin D.Ten years of feasibility pump, and counting[J]. EURO Journal on Computational Optimization, 2019, 7(1): 1-14.
[51] Danna E, Rothberg E, Le Pape C.Exploring relaxation induced neighborhoods to improve MIP solutions[J]. Mathematical Programming, 2005, 102(1): 71-90.
[52] Rothberg E.An evolutionary algorithm for polishing mixed integer programming solutions[J]. INFORMS Journal on Computing, 2007, 19(4): 534-541.
[53] Pferschy U, Staněk R.Generating subtour elimination constraints for the TSP from pure integer solutions[J]. Central European Journal of Operations Research, 2017, 25(1): 231-260.
[54] Wang Kangping, Huang Lan, Zhou Chunguang, et al.Particle swarm optimization for traveling salesman problem[C]//Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.03EX693), Xi'an, 2004: 1583-1585.
[55] Gao Qian, Yang Zhifang, Yin Wotao, et al.Internally induced branch-and-cut acceleration for unit commitment based on improvement of upper bound[J]. IEEE Transactions on Power Systems, 2022, 37(3): 2455-2458.
[56] Koc U, Mehrotra S.Generation of feasible integer solutions on a massively parallel computer using the feasibility pump[J]. Operations Research Letters, 2017, 45(6): 652-658.
[57] Koch T, Ralphs T, Shinano Y.Could we use a million cores to solve an integer program?[J]. Mathematical Methods of Operations Research, 2012, 76(1): 67-93.
[58] Hutter F, Hoos H H, Leyton-Brown K.Automated configuration of mixed integer programming solvers[C]//Lodi A, Milano M, Toth P. International Conference on Integration of Artificial Intelligence (AI) and Operations Research (OR) Techniques in Constraint Programming. Berlin, Heidelberg: Springer, 2010: 186-202.
[59] Tang Yunhao, Agrawal S, Faenza Y. Reinforcement learning for integer programming: learning to cut[EB/OL].2019: arXiv: 1906.04859. https://arxiv.org/abs/1906.04859.pdf
[60] Chmiela A, Khalil E B, Gleixner A, et al. Learning to schedule heuristics in branch-and-bound[EB/OL].2021: arXiv: 2103.10294. https://arxiv.org/abs/2103.10294.pdf
[61] de Souza M. Automatic design of heuristic algorithms for binary optimization problems[C]//Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, Montreal, Canada, 2021: 4881-4882.
[62] Fischetti M, Lodi A, Zarpellon G.Learning MILP resolution outcomes before reaching time-limit[C]//Rousseau LM, Stergiou K. International Conference on Integration of Constraint Programming, Artificial Intelligence, and Operations Research. Cham: Springer, 2019: 275-291.
[63] Gregor H, Daniel A, Pierre L B, et al.Estimating the size of branch-and-bound trees[J]. INFORMS Journal on Computing, 2021, 34(2): 934-952.
[64] Berthold T, Hendel G, Koch T.From feasibility to improvement to proof: three phases of solving mixed-integer programs[J]. Optimization Methods and Software, 2018, 33(3): 499-517.
[65] Safdarian F, Mohammadi A, Kargarian A.Temporal decomposition for security-constrained unit commitment[J]. IEEE Transactions on Power Systems, 2020, 35(3): 1834-1845.
[66] Feizollahi M J, Costley M, Ahmed S, et al.Large-scale decentralized unit commitment[J]. International Journal of Electrical Power & Energy Systems, 2015, 73: 97-106.
[67] Chen Yonghong, Pan Feng, Qiu Feng, et al.Security-constrained unit commitment for electricity market: modeling, solution methods, and future challenges[J]. IEEE Transactions on Power Systems, 2023, 38(5): 4668-4681.
[68] Ding Jianya, Zhang Chao, Shen Lei, et al.Accelerating primal solution findings for mixed integer programs based on solution prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(2): 1452-1459.
[69] Berthold T, Hendel G, Salvagnin D.Transferring information across restarts in MIP[C]//Schaus P. International Conference on Integration of Constraint Programming, Artificial Intelligence, and Operations Research. Cham: Springer, 2022: 24-33.
[70] Anderson D, Hendel G, Le Bodic P, et al.Clairvoyant restarts in branch-and-bound search using online tree-size estimation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 1427-1434.
[71] Günlük O, Woeginger G.Integer Programming and Combinatoral Optimization: 15th International Conference, IPCO 2011, New York, NY, USA, June 15-17, 2011. Proceedings[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.
[72] Claudio C, Andrea L, Andrea T.Cutting planes from the branch-and-bound tree: challenges and opportunities[J]. INFORMS Journal on Computing, 2022, 35(1): 2-4.
[73] Gao Qian, Yang Zhifang, Li Wenyuan, et al.Online learning of stable integer variables in unit commitment using internal information[J]. IEEE Transactions on Power Systems, 2023, 38(3): 2947-2950.
[74] Bengio Y, Lodi A, Prouvost A.Machine learning for combinatorial optimization: a methodological tour d’horizon[J]. European Journal of Operational Research, 2021, 290(2): 405-421.
[75] Achterberg T.What’s New - Gurobi 10.0[EB/OL]//Gurobi Optimization.[2023-04-03]. https://www.gurobi.com/whats-new-gurobi-10-0/. |