[1] 何金良, 曾嵘, 陈水明. 输电线路雷电防护技术研究(三): 防护措施[J]. 高电压技术, 2009, 35(12): 2917-2923.
He Jinliang, Zeng Rong, Chen Shuiming.Lightning protection study of transmission line, part Ⅲ: protection measures[J]. High Voltage Engineering, 2009, 35(12): 2917-2923.
[2] He Jinliang, Gu Shanqiang, Chen Shuiming, et al.Discussion on measures against lightning breakage of covered conductors on distribution lines[J]. IEEE Transactions on Power Delivery, 2008, 23(2): 693-702.
[3] 许寅, 和敬涵, 王颖, 等. 韧性背景下的配网故障恢复研究综述及展望[J]. 电工技术学报, 2019, 34(16): 3416-3429.
Xu Yin, He Jinghan, Wang Ying, et al.A review on distribution system restoration for resilience enhancement[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3416-3429.
[4] 李蕊, 李跃, 苏剑, 等. 配电网重要电力用户停电损失及应急策略[J]. 电网技术, 2011, 35(10): 170-176.
Li Rui, Li Yue, Su Jian, et al.Power supply interruption cost of important power consumers in distribution network and its emergency management[J]. Power System Technology, 2011, 35(10): 170-176.
[5] Podporkin G V, Enkin E Y, Kalakutsky E S, et al.Overhead lines lightning protection by multi-chamber arresters and insulator-arresters[J]. IEEE Transactions on Power Delivery, 2011, 26(1): 214-221.
[6] 王巨丰, 黄上师, 王嬿蕾, 等. 架空线路用气体灭弧防雷发展综述[J]. 高电压技术, 2021, 47(9): 3189-3199.
Wang Jufeng, Huang Shangshi, Wang Yanlei, et al.Development of gas arc-extinguishing lightning protection in overhead lines[J]. High Voltage Engineering, 2021, 47(9): 3189-3199.
[7] Mürmann M, Chusov A, Fuchs R, et al.Modeling and simulation of the current quenching behavior of a line lightning protection device[J]. Journal of Physics D: Applied Physics, 2017, 50(10): 105203.
[8] Guo Ting, Zhou Wenjun, Su Ziming, et al.A multigap structure for power frequency arc quenching in 10-kV systems[J]. IEEE Transactions on Plasma Science, 2016, 44(11): 2622-2631.
[9] 郭婷, 周文俊, 黄海鲲, 等. 多间隙灭弧结构熄灭工频电弧的仿真与试验[J]. 中国电机工程学报, 2016, 36(10): 2853-2861.
Guo Ting, Zhou Wenjun, Huang Haikun, et al.Simulation and experiment on arc quenching structure with multi-gaps to quench the power frequency arc[J]. Proceedings of the CSEE, 2016, 36(10): 2853-2861.
[10] 王巨丰, 周鑫, 王中, 等. 自能式多断口结构对电弧抑制的仿真优化[J]. 电网技术, 2019, 43(2): 739-745.
Wang Jufeng, Zhou Xin, Wang Zhong, et al.Study on mechanism of self-energy arc suppression based on multi-break structure[J]. Power System Technology, 2019, 43(2): 739-745.
[11] Li Zijian, Wang Jufeng, Zhou Xin, et al.Influence of chamber structure on arc quenching in multigap system[J]. High Voltage, 2020, 5(3): 313-318.
[12] Jia Wenbin, Sima Wenxia, Yuan Tao, et al.Optimization and experimental study of the semi-closed short-gap arc-extinguishing chamber based on a magnetohydrodynamics model[J]. Energies, 2018, 11(12): 3335.
[13] Sima Wenxia, Jia Wenbin, Yuan Tao, et al.Dynamic evolution of arc plasma in a semi-enclosed arc-extinguishing chamber and its influencing factors[J]. Physics of Plasmas, 2021, 28(6): 063510.
[14] 贾文彬, 司马文霞, 袁涛, 等. 半密闭灭弧腔室内电弧运动特性的三维仿真和实验[J]. 电工技术学报, 2021, 36(增刊1): 321-329.
Jia Wenbin, Sima Wenxia, Yuan Tao, et al.3D simulation and experiment research on arc motion characteristics in the semi-enclosed arc-extinguishing chamber[J]. Transactions of China Electrotechnical Society, 2021, 36(S1): 321-329.
[15] Feng D, Xiu S, Liu G, et al.Experimental investigation of high-current vacuum arc instability modes under transverse magnetic field[J]. IEEE Transactions on Plasma Science, 2015, 43(12): 4161-4168.
[16] Iwata T, Nukaga J, Rokunohe T.Improving current-interruption performance by using spiral electrode for SF6 disconnecting switch[J]. IEEE Transactions on Power Delivery, 2022, 37(3): 1523-1529.
[17] Shi Weixin, Wang Lijun, Lin Renjie, et al.Experimental investigation of triggered vacuum arc behavior under different composite structural contacts[J]. IEEE Transactions on Plasma Science, 2019, 47(1): 661-670.
[18] Lamara T, Gentsch D.Theoretical and experimental investigation of new innovative TMF-AMF contacts for high-current vacuum arc interruption[J]. IEEE Transactions on Plasma Science, 2013, 41(8): 2043-2050.
[19] 刘晓鹏, 董曼玲, 邓虎威, 等. 空气间隙击穿后放电通道内的气体运动特性[J]. 电工技术学报, 2021, 36(13): 2667-2674.
Liu Xiaopeng, Dong Manling, Deng Huwei, et al.Movement characteristics of the gas in discharge channel after air gap breakdown[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2667-2674.
[20] 朱德忠. 热物理激光测试技术[M]. 北京: 科学出版社, 1990.
[21] Singh B, Lalit K R, Vlachos P, et al.Shock generated vorticity in spark discharges[J]. Journal of Physics D: Applied Physics, 2021, 54(31): 315202.
[22] Leonov S B, Isaenkov Y I, Firsov A A, et al.Jet regime of the afterspark channel decay[J]. Physics of Plasmas, 2010, 17(5): 053505.
[23] 刘晓鹏, 赵贤根, 刘磊, 等. 长空气间隙放电通道的绝缘恢复特性[J]. 电工技术学报, 2021, 36(2): 380-387.
Liu Xiaopeng, Zhao Xiangen, Liu Lei, et al.Characteristics of the discharge channel during the relaxation process in the long air gap[J]. Transactions of China Electrotechnical Society, 2021, 36(2): 380-387.
[24] 董曼玲, 刘晓鹏, 郭磊, 等. 空气间隙击穿后放电通道内气体密度恢复特性[J]. 高电压技术, 2021, 47(12): 4162-4168.
Dong Manling, Liu Xiaopeng, Guo Lei, et al.Recovery characteristics of gas density in discharge channel after air gap breakdown[J]. High Voltage Engineering, 2021, 47(12): 4162-4168.
[25] 刘晓鹏, 赵贤根, 马御棠, 等. 空气间隙击穿后电弧通道的特性分析[J/OL]. 中国电机工程学报: 1-10[2023-05-18]. http://kns.cnki.net/kcms/detail/11.2107.TM.20220830.1053.002.html.
Liu Xiaopeng, Zhao Xiangen, Ma Yutang, et al. Characteristics of the arc channel during the post-discharge stage in air gap[J/OL]. Proceedings of the CSEE: 1-10[2023-05-18]. http://kns.cnki.net/kcms/detail/11.2107.TM.20220830.1053.002.html.
[26] 黄上师. 多断口压缩自灭弧结构熄弧及介质强度恢复研究[D]. 南宁: 广西大学, 2020.
[27] 苏伟龙, 许志红. 高压直流继电器磁吹系统的建模与设计[J]. 电工技术学报, 2022, 37(6): 1583-1594.
Su Weilong, Xu Zhihong.Modeling and design of magnetic blowing system for high voltage direct current relay[J]. Transactions of China Electrotechnical Society, 2022, 37(6): 1583-1594.
[28] MacGregor S J, Tuema F A, Turnbull S M, et al. The operation of repetitive high-pressure spark gap switches[J]. Journal of Physics D: Applied Physics, 1993, 26(6): 954-958.
[29] Wang Zhou, Bovik A C, Sheikh H R, et al.Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2004, 13(4): 600-612.
[30] Ruiz L A, Whittlesey R W, Dabiri J O.Vortex-enhanced propulsion[J]. Journal of Fluid Mechanics, 2011, 668: 5-32.
[31] Gao L, Yu S C M. Development of the trailing shear layer in a starting jet during pinch-off[J]. Journal of Fluid Mechanics, 2012, 700: 382-405. |