[1] 南阳防爆电气研究所. 防爆电气标准汇编第二分册: GB 3846—2010[S].2011.
[2] Uber C, Hilbert M, Felgner A, et al.Electrical discharges caused by opening contacts in an ignitable atmosphere - Part I: Analysis of electrical parameters at ignition limits[J]. Journal of Loss Prevention in the Process Industries, 2019, 61: 114-121.
[3] 刘建华. 爆炸性气体环境下本质安全电路放电理论及非爆炸评价方法的研究[D]. 徐州: 中国矿业大学, 2008.
[4] 王玉婷, 刘树林, 马一博, 等. 简单电容电路最小点燃电压曲线的数值化研究[J]. 电工技术学报, 2014, 29(增刊1): 345-350.
Wang Yuting, Liu Shulin, Ma Yibo, et al.Research on digitization of the minimum ignition voltage curve of simple capacitive circuit[J]. Transactions of China Electrotechnical Society, 2014, 29(S1): 345-350.
[5] 刘树林, 崔强, 李勇. Buck 变换器的输出短路火花放电能量及输出本质安全判据[J]. 物理学报, 2013, 62(16): 168401.
Liu Shulin, Cui Qiang, Li Yong.Output short-circuit spark discharging energy and output intrinsic safety criterion of Buck converters[J]. Acta Physica Sinica, 2013, 62(16): 168401.
[6] 孟庆海, 田媛. 本质安全电路模拟储能元件潜在危险性分析及其本质安全判据[J]. 电工技术学报, 2022, 37(3): 676-685.
Meng Qinghai, Tian Yuan.Analysis of potential hazards of analog energy storage components in the intrinsic safety circuits and their intrinsic safety criteria[J]. Transactions of China Electrotechnical Society, 2022, 37(3): 676-685.
[7] 成永红, 孟国栋, 董承业. 微纳尺度电气击穿特性和放电规律研究综述[J]. 电工技术学报, 2017, 32(2): 13-23.
Cheng Yonghong, Meng Guodong, Dong Chengye.Review on the breakdown characteristics and discharge behaviors at the micro & nano scale[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 13-23.
[8] 柴钰, 张妮, 刘杰, 等. 微尺度下N2-O2 电晕放电的动态特性二维仿真[J]. 物理学报, 2020, 69(16): 183-192.
Chai Yu, Zhang Ni, Liu Jie, et al.Two-dimensional simulation of dynamic characteristics of N2-O2 corona discharge at micro scale[J]. Acta Physica Sinica, 2020, 69(16): 183-192.
[9] 王党树, 古东明, 栾哲哲, 等. 基于PIC/MCC 法爆炸性气体环境下的微尺度放电特性[J]. 高电压技术, 2021, 47(3): 805-815.
Wang Dangshu, Gu Dongming, Luan Zhezhe, et al.Micro-scale discharge characteristics in explosive gas environment based on PIC/MCC method[J]. High Voltage Engineering, 2021, 47(3): 805-815.
[10] 廖瑞金, 刘康淋, 伍飞飞, 等. 棒-板电极直流负电晕放电过程中重粒子特性的仿真研究[J]. 高电压技术, 2014, 40(4): 965-971.
Liao Ruijin, Liu Kanglin, Wu Feifei, et al.Simulative study on characteristic of heavy particles in negative bar-plate DC corona discharge[J]. High Voltage Engineering, 2014, 40(4): 965-971.
[11] 何彦良, 丁未, 孙安邦, 等. 电场不均匀系数对 SF6/N2 混合气体负直流电晕电流脉冲特性的影响[J]. 电工技术学报, 2021, 36(15): 3124-3134.
He Yanliang, Ding Wei, Sun Anbang, et al.Effect of electric field non-uniformity coefficient on current pulse characteristics of negative DC corona in SF6/N2 gas mixtures[J]. Transactions of China Electrotechnical Society, 2021, 36(15): 3124-3134.
[12] Levko D, Raja L L.Fluid versus global model approach for the modeling of active species production by streamer discharge[J]. Plasma Sources Science and Technology, 2017, 26(3): 035003.
[13] 王伟, 杨悦民, 雷肖, 等. 基于有限元分析的大容量叠装电抗器温度场研究[J]. 高压电器, 2022, 58(8): 267-274.
Wang Wei, Yang Yuemin, Lei Xiao, et al.Research on temperature field of large capacity stacked reactor based on finite element analysis[J]. High Voltage Apparatus, 2022, 58(8): 267-274.
[14] 古海良, 周继贺, 蒋文明, 等. 低压预制母线温升特性的建模仿真研究[J]. 高压电器, 2022, 58(7): 214-222.
Gu Hailiang, Zhou Jihe, Jiang Wenming, et al.Modeling and simulation study on temperature rise of low-voltage prefabricated busbar[J]. High Voltage Apparatus, 2022, 58(7): 214-222.
[15] Herrebout D, Bogaerts A, Yan M, et al.Onedimensional fluid model for an rf methane plasma of interest in deposition of diamond-like carbon layers[J]. Journal of Applied Physics, 2001, 90(2): 570-579.
[16] Ivanov V, Proshina O, Rakhimova T, et al.Comparison of a one-dimensional particle-in-cell- Monte Carlo model and a one-dimensional fluid model for a CH4/H2 capacitively coupled radio frequency discharge[J]. Journal of Applied Physics, 2002, 91(10): 6296-6302.
[17] 柴钰, 弓丽萍, 张晶园, 等. 微纳电离式矿井甲烷传感器安全放电及敏感机理仿真[J]. 电工技术学报, 2019, 34(23): 4870-4879.
Chai Yu, Gong Liping, Zhang Jingyuan, et al.Simulation of safe discharge and sensitive mechanism of micro-nano ionized mine methane sensor[J]. Transactions of China Electrotechnical Society, 2019, 34(23): 4870-4879.
[18] 赵曰峰, 王超, 王伟宗, 等. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟[J]. 物理学报, 2018, 67(8): 085202.
Zhao Yuefeng, Wang Chao, Wang Weizong, et al.Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure[J]. Acta Physica Sinica, 2018, 67(8): 085202.
[19] M Torres J, Dhariwal R S. Electric field breakdown at micrometre separations in air and vacuum[J]. Microsystem Technologies, 1999, 6(1): 6-10.
[20] 孟国栋, 折俊艺, 应琪, 等. 微米尺度气体击穿的数值模拟研究进展[J]. 电工技术学报, 2022, 37(15): 3857-3875.
Meng Guodong, She Junyi, Ying Qi, et al.Research progress on numerical simulation of gas breakdown at microscale[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3857-3875.
[21] Go D B, Venkattraman A.Microscale gas breakdown: ion-enhanced field emission and the modified Paschen's curve[J]. Journal of Physics D: Applied Physics, 2014, 47(50): 503001.
[22] Chen C H, Yeh J A, Wang P J.Electrical breakdown phenomena for devices with micron separations[J]. Journal of Micromechanics and Microengineering, 2006, 16(7): 1366-1373.
[23] Georghiou G E, Papadakis A P, Morrow R, et al.Numerical modelling of atmospheric pressure gas discharges leading to plasma production[J]. Journal of Physics D: Applied Physics, 2005, 38(20): R303-R328.
[24] 伍飞飞, 廖瑞金, 杨丽君, 等. 棒—板电极直流负电晕放电特里切尔脉冲的微观过程分析[J]. 物理学报, 2013, 62(11): 115201.
Wu Feifei, Liao Ruijin, Yang Lijun, et al.Numerical simulation of Trichel pulse characteristics in bar-plate DC negative corona discharge[J]. Acta Physica Sinica, 2013, 62(11): 115201.
[25] Wang Qiao, Ning Wenjun, Dai Dong, et al.Characteristics and mechanisms of transition from filament to homogeneous glow in atmospheric helium dielectric barrier discharges under variation of the applied voltage amplitude[J]. Journal of Physics D: Applied Physics, 2019, 52(20): 205201.
[26] Lazarou C, Belmonte T, Chiper A S, et al.Numerical modelling of the effect of dry air traces in a helium parallel plate dielectric barrier discharge[J]. Plasma Sources Science and Technology, 2016, 25(5): 055023.
[27] 刘学悫. 阴极电子学[M]. 北京: 科学出版社, 1980.
[28] Ramses, Snoeckx, . Influence of N2 concentration in a CH4/N2 dielectric barrier discharge used for CH4 conversion into H2[J]. International Journal of Hydrogen Energy, 2013, 38(36): 16098-16120.
[29] (美) 伯纳德· 刘易斯(Bernard Lewis) , (美) 京特·冯·埃尔贝(Guenther von Elbe)著. 燃气燃烧与瓦斯爆炸[M]王方, 译. 北京: 中国建筑工业出版社, 2010.
[30] Sekimoto K, Takayama M.Negative ion formation and evolution in atmospheric pressure corona discharges between point-to-plane electrodes with arbitrary needle angle[J]. The European Physical Journal D, 2010, 60(3): 589-599.
[31] Forbes R G, Deane J H B. Reformulation of the standard theory of Fowler-Nordheim tunnelling and cold field electron emission[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 463(2087): 2907-2927.
[32] Descoeudres A, Levinsen Y, Calatroni S, et al.Investigation of the dc vacuum breakdown mechanism[J]. Physical Review Special Topics - Accelerators and Beams, 2009, 12(9): 092001.
[33] 徐翱, 金大志, 王亚军, 等. 场致发射影响微间隙气体放电形成的模拟[J]. 高电压技术, 2020, 46(2): 715-722.
Xu Ao, Jin Dazhi, Wang Yajun, et al.Simulation on influence of field emission to the gas discharge in micro-scale gaps[J]. High Voltage Engineering, 2020, 46(2): 715-722.
[34] Sekimoto K, Takayama M.Negative ion formation and evolution in atmospheric pressure corona discharges between point-to-plane electrodes with arbitrary needle angle[J]. The European Physical Journal D, 2010, 60(3): 589-599. |