[1] 胡泽春, 邵成成, 何方, 等. 电网与交通网耦合的设施规划与运行优化研究综述及展望[J]. 电力系统自动化, 2022, 46(12): 3-19.
Hu Zechun, Shao Chengcheng, He Fang, et al.Review and prospect of research on facility planning and optimal operation for coupled power and transportation networks[J]. Automation of Electric Power Systems, 2022, 46(12): 3-19.
[2] 马伟明. 关于电工学科前沿技术发展的若干思考[J]. 电工技术学报, 2021, 36(22): 4627-4636.
Ma Weiming.Thoughts on the development of frontier technology in electrical engineering[J]. Transactions of China Electrotechnical Society, 2021, 36(22): 4627-4636.
[3] 毛玲, 张钟浩, 赵晋斌, 等. 车-桩-网交融技术研究现状及展望[J]. 电工技术学报, 2022, 37(24): 6357-6371.
Mao Ling, Zhang Zhonghao, Zhao Jinbin, et al.Research status and prospect of vehicle-pile-net blending technology[J]. Transactions of China Electrotechnical Society, 2022, 37(24): 6357-6371.
[4] Huang Weiqing, Wang Qiufang, Li Han, et al.Review of recent progress of emission trading policy in China[J]. Journal of Cleaner Production, 2022, 349: 131480.
[5] Wang Shengshi, Li Miao, Li Bin, et al.Optimal operation of integrated power and oil transmission systems[C]//2021 IEEE 4th International Electrical and Energy Conference (CIEEC), Wuhan, China, 2021: 1-6.
[6] Zhou Xingyuan, Zhang Haoran, Qiu Rui, et al.A hybrid time MILP model for the pump scheduling of multi-product pipelines based on the rigorous description of the pipeline hydraulic loss changes[J]. Computers & Chemical Engineering, 2019, 121: 174-199.
[7] Zhou Xingyuan, Zhang Haoran, Xin Shengchao, et al.Future scenario of China’s downstream oil supply chain: low carbon-oriented optimization for the design of planned multi-product pipelines[J]. Journal of Cleaner Production, 2020, 244: 118866.
[8] Oikonomou K, Parvania M, Khatami R.Optimal demand response scheduling for water distribution systems[J]. IEEE Transactions on Industrial Informatics, 2018, 14(11): 5112-5122.
[9] Li Zhengbing, Liang Yongtu, Liao Qi, et al.A review of multiproduct pipeline scheduling: from bibliometric analysis to research framework and future research directions[J]. Journal of Pipeline Science and Engineering, 2021, 1(4): 395-406.
[10] Wang Shengshi, Zuo Lianyong, Li Miao, et al.The data-driven modeling of pressure loss in multi-batch refined oil pipelines with drag reducer using long short-term memory (LSTM) network[J]. Energies, 2021, 14(18): 5871.
[11] Zhou Xingyuan, Liang Yongtu, Zhang Xin, et al.A MILP model for the detailed scheduling of multiproduct pipelines with the hydraulic constraints rigorously considered[J]. Computers & Chemical Engineering, 2019, 130: 106543.
[12] Liao Qi, Castro Pedrom, Liang Yongtu, et al.New batch-centric model for detailed scheduling and inventory management of mesh pipeline networks[J]. Computers & Chemical Engineering, 2019, 130: 106568.
[13] Zuo Lianyong, Wang Shengshi, Ai Xiaomeng, et al.Sequential Decision-Making Methods on Real-time Optimization of Pump Scheduling of Refined Oil Pipelines[C]// 2021 IEEE Sustainable Power and Energy Conference (iSPEC), Nanjing, 2021:2177-2183.
[14] Losenkov A, Yushchenko T, Strelnikova S, et al.Optimization of oil-flow scheduling in branched pipeline systems[J]. Journal of Pipeline Systems Engineering and Practice, 2019, 10(3): 4019014.
[15] Haihong Chen, Lili Zuo, Changchun Wu, et al.Optimization on delivery schedules of a multiproduct pipeline based on the oil-demand mode[J]. Acta Petrolei Sinica, 2019, 40(8):990.
[16] Hong Bingyuan, Li Xiaoping, Di Guojia, et al.An integrated MILP method for gathering pipeline networks considering hydraulic characteristics[J]. Chemical Engineering Research and Design, 2019, 152: 320-335.
[17] Xin Shengchao, Liang Yongtu, Zhou Xingyuan, et al.A two-stage strategy for the pump optimal scheduling of refined products pipelines[J]. Chemical Engineering Research and Design, 2019, 152: 1-19.
[18] Wang Shengshi, Fang Jiakun, Ai Xiaomeng, et al.Implementation and field test of optimal pump scheduling in the multiproduct refined oil transmission system[J]. IEEE Transactions on Industry Applications, 2022, 58(6): 7930-7941.
[19] Chen Haihong, Zuo Lili, Wu Changchun, et al.Optimizing detailed schedules of a multiproduct pipeline by a monolithic MILP formulation[J]. Journal of Petroleum Science and Engineering, 2017, 159: 148-163.
[20] Liao Qi, Liang Yongtu, Xu Ning, et al.An MILP approach for detailed scheduling of multi-product pipeline in pressure control mode[J]. Chemical Engineering Research and Design, 2018, 136: 620-637.
[21] Liao Qi, Zhang Haoran, Xu Ning, et al.A MILP model based on flowrate database for detailed scheduling of a multi-product pipeline with multiple pump stations[J]. Computers & Chemical Engineering, 2018, 117: 63-81.
[22] 赵汉中. 工程流体力学 Ⅱ[M]. 武汉: 华中科技大学出版社, 2005.
[23] Mehanna O, Huang Kejun, Gopalakrishnan B, et al. Feasible point pursuit and successive approximation of non-convex QCQPs[EB/OL].2014: arXiv: 1410.2277. https://arxiv.org/abs/1410.2277
[24] Cafaro V G, Cafaro D C, Méndez C A, et al.MINLP model for the detailed scheduling of refined products pipelines with flow rate dependent pumping costs[J]. Computers & Chemical Engineering, 2015, 72: 210-221.
[25] Zabihi R, Mowla D, Karami H R.Artificial intelligence approach to predict drag reduction in crude oil pipelines[J]. Journal of Petroleum Science and Engineering, 2019, 178: 586-593.
[26] 张谦, 邓小松, 岳焕展, 等. 计及电池寿命损耗的电动汽车参与能量-调频市场协同优化策略[J]. 电工技术学报, 2022, 37(1): 72-81.
Zhang Qian, Deng Xiaosong, Yue Huanzhan, et al.Coordinated optimization strategy of electric vehicle cluster participating in energy and frequency regulation markets considering battery lifetime degradation[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 72-81.
[27] Chen Lei, Yuan Ziyun, Xu Jianxin, et al.A novel predictive model of mixed oil length of products pipeline driven by traditional model and data[J]. Journal of Petroleum Science and Engineering, 2021, 205: 108787.
[28] 姜云鹏, 任洲洋, 李秋燕, 等. 考虑多灵活性资源协调调度的配电网新能源消纳策略[J]. 电工技术学报, 2022, 37(7): 1820-1835.
Jiang Yunpeng, Ren Zhouyang, Li Qiuyan, et al.An accommodation strategy for renewable energy in distribution network considering coordinated dispatching of multi-flexible resources[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1820-1835.
[29] 徐玉琴, 方楠. 基于分段线性化与改进二阶锥松弛的电-气互联系统多目标优化调度[J]. 电工技术学报, 2022, 37(11): 2800-2812.
Xu Yuqin, Fang Nan.Multi objective optimal scheduling of integrated electricity-gas system based on piecewise linearization and improved second order cone relaxation[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2800-2812.
[30] Marco B.Solving mixed-integer programming problems using piecewise linearization methods[D]. Konstanz: Universität Konstanz, 2017.
[31] Yu Li, Wang Sujing, Xu Qiang.Optimal scheduling for simultaneous refinery manufacturing and multi oil-product pipeline distribution[J]. Computers & Chemical Engineering, 2022, 157: 107613. |